• Title/Summary/Keyword: 전역 경로

Search Result 188, Processing Time 0.027 seconds

The Using of Self-organizing Feature Map for Global Path Planning of Mobile Robot (이동로봇의 전역 경로계획에서 Self-organizing Feature Map의 이용)

  • Cha, Young-Youp;Kang, Hyon-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.817-822
    • /
    • 2004
  • This paper provides a global path planning method using self-organizing feature map which is a method among a number of neural network. The self-organizing feature map uses a randomized small valued initial weight vectors, selects the neuron whose weight vector best matches input as the winning neuron, and trains the weight vectors such that neurons within the activity bubble are move toward the input vector. On the other hand, the modified method in this research uses a predetermined initial weight vectors, gives the systematic input vector whose position best matches obstacles, and trains the weight vectors such that neurons within the activity bubble are move toward the input vector. According to simulation results one can conclude that the modified neural network is useful tool for the global path planning problem of a mobile robot.

  • PDF

Self-organizing Feature Map for Global Path Planning of Mobile Robot (이동로봇의 전역 경로계획을 위한 Self-organizing Feature Map)

  • Jeong Se-Mi;Cha Young-Youp
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.94-101
    • /
    • 2006
  • A global path planning method using self-organizing feature map which is a method among a number of neural network is presented. The self-organizing feature map uses a randomized small valued initial weight vectors, selects the neuron whose weight vector best matches input as the winning neuron, and trains the weight vectors such that neurons within the activity bubble are moved toward the input vector On the other hand, the modified method in this research uses a predetermined initial weight vectors of 1-dimensional string and 2-dimensional mesh, gives the systematic input vector whose position best matches obstacles, and trains the weight vectors such that neurons within the activity bubble are moved toward the input vector. According to simulation results one can conclude that the modified neural network is useful tool for the global path planning problem of a mobile robot.

Global Path Planning for Autonomous Underwater Vehicles in Current Field with Obstacles (조류와 장애물을 고려한 자율무인잠수정의 전역경로계획)

  • Lee, Ki-Young;Kim, Su-Bum;Song, Chan-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.1-7
    • /
    • 2012
  • This paper deals with the global path planning problem for AUVs (autonomous underwater vehicles) in a tidal current field. The previous researches in the field were unsuccessful at simultaneously addressing the two issues of obstacle avoidance and tidal current-based optimization. The use of a genetic algorithm is proposed in this paper to move past this limitation and solve both issues at once. Simulation results showed that the genetic algorithm could be applied to generate an optimal path in the field of a tidal current with multiple obstacles.

A Terrain Analysis System for Global Path Planning of Unmanned Ground Vehicle (무인지상차량의 전역경로계획을 위한 지형정보 분석 시스템)

  • Park, Won-Ik;Lee, Ho-Joo;Kim, Do-Jong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.583-589
    • /
    • 2013
  • In this paper, we proposed a system that efficiently provides support maps which includes the grid based terrain analysis information. To do this, we use the FDB which is defined as a GIS database that contains features with attributes attached to the features. The FDB is composed of a number of features and feature classes. In order to create support maps, it is necessary to classify feature classes that are associated with each support map and to search them in a grid map. The proposed system use a ontology model to classify semantically feature classes and the quad-tree data structure to find them in a grid map quickly. Therefore, our system is expected to be utilized for global path planning of UGV. In this paper, we show the possibility through an experimental implementation.

Global Path Planning of Mobile Robot Using String and Modified SOFM (스트링과 수정된 SOFM을 이용한 이동로봇의 전역 경로계획)

  • Cha, Young-Youp
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.4
    • /
    • pp.69-76
    • /
    • 2008
  • The self-organizing feature map(SOFM) among a number of neural network uses a randomized small valued initial weight vectors, selects the neuron whose weight vector best matches input as the winning neuron, and trains the weight vectors such that neurons within the activity bubble are moved toward the input vector. On the other hand, the modified method in this research uses a predetermined initial weight vectors of the 1-dimensional string, gives the systematic input vector whose position best matches obstacles, and trains the weight vectors such that neurons within the activity bubble are move toward the opposite direction of input vector. According to simulation results one can conclude that the method using string and the modified neural network is useful tool to mobile robot for the global path planning.

Global Path Planning for an Autonomous Underwater Vehicle in a Vortical Current Field by Using Genetic Algorithm (유전자 알고리즘을 이용한 무인잠수정의 와조류장에서의 전역경로계획)

  • Lee, Ki-Young;Kim, Subum;Song, Chan-Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.473-480
    • /
    • 2013
  • The purpose of this paper is to demonstrate that the genetic algorithm can be useful for the global path planning when the obstacles and current field data are given. In particular, the possibilities for a novel type small AUV mission deployment in tidal regions, which experience vortical currents, were examined. Experimental simulations show feasibility and effective in generate the global path regardless of current and obstacles. By choosing an appropriate path in space, an AUV may both bypass adverse currents which are too fast to be overcome by the vehicle's motor and also exploit favorable currents to achieve far greater speeds than motors could otherwise provide, while substantially saving energy.

A Simulated Annealing Algorithm for Path Finding in A Game Map (게임 맵에서 경로 찾기 해법을 위한 시뮬레이티드 어닐링 알고리즘)

  • Kang, Myung-Ju
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.01a
    • /
    • pp.189-192
    • /
    • 2012
  • 게임 인공지능에서 경로 찾기는 매우 중요한 분야이다. 캐릭터나 NPC(Non Player Charater)가 목적지까지의 경로를 탐색하기 위해서는 복잡하게 구성된 게임 맵에서 오브젝트나 벽 등의 장애물을 회피하면서 가능한 최단 경로를 찾아야 한다. 기존의 일반적인 경로 찾기 알고리즘은 캐릭터의 움직임이 자유로운 간단한 게임 맵에서는 전역 최소해 탐색이 가능하다. 그러나 다양한 오브젝트 등이 배치된 큰 규모의 게임 맵에서는 캐릭터가 목적지까지의 경로를 탐색하는 과정에서 지역 최소해(Local Minima)로의 수렴이 발생함으로써 이를 탈피하는 것이 어렵고, 결국에는 목적지까지 도달하지 못하는 상황이 발생하게 된다. 본 논문에서는 이러한 기존 경로 찾기 알고리즘의 단점을 해결하기 위해 시뮬레이티드 어닐링 알고리즘을 제안하였다.

  • PDF

Mission Oriented Global Path Generation for Unmanned Combat Vehicle Based on the Mission Type and Multiple Grid Maps (임무유형과 다중 격자지도 기반의 임무지향적 전역경로 생성 연구)

  • Lee, Ho-Joo;Lee, Young-Il;Lee, Myung-Chun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.180-187
    • /
    • 2010
  • In this paper, a global path generation method is suggested using multiple grid maps connected with the mission type of unmanned combat vehicle(UCV). In order to carry out a mission for UCV, it is essential to find a global path which is coincident with the characteristics of the mission. This can be done by considering various combat circumstances represented as grid maps such as velocity map, threat map and communication map. Cost functions of multiple grid maps are linearly combined and normalized to them simultaneously for the path generation. The proposed method is realized using $A^*$, a well known search algorithm, and cost functions are normalized in the ratio of the traverse time which is one of critical information should be provided with the operators using the velocity map. By the experiments, it is checked found global paths match with the mission type by reflecting input data of grid maps properly and the computation time is short enough to regenerate paths in real time as combat circumstances change.

Performance Improvement of Cooperating Agents through Balance between Intensification and Diversification (강화와 다양화의 조화를 통한 협력 에이전트 성능 개선에 관한 연구)

  • 이승관;정태충
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.6
    • /
    • pp.87-94
    • /
    • 2003
  • One of the important fields for heuristic algorithm is how to balance between Intensification and Diversification. Ant Colony Optimization(ACO) is a new meta heuristic algorithm to solve hard combinatorial optimization problem. It is a population based approach that uses exploitation of positive feedback as well as Breedy search It was first Proposed for tackling the well known Traveling Salesman Problem(TSP). In this paper, we deal with the performance improvement techniques through balance the Intensification and Diversification in Ant Colony System(ACS). First State Transition considering the number of times that agents visit about each edge makes agents search more variously and widen search area. After setting up criteria which divide elite tour that receive Positive Intensification about each tour, we propose a method to do addition Intensification by the criteria. Implemetation of the algorithm to solve TSP and the performance results under various conditions are conducted, and the comparision between the original An and the proposed method is shown. It turns out that our proposed method can compete with the original ACS in terms of solution quality and computation speed to these problem.

Optimal Routes Analysis of Vehicles for Auxiliary Operations in Open-pit Mines using a Heuristic Algorithm for the Traveling Salesman Problem (휴리스틱 외판원 문제 알고리즘을 이용한 노천광산 보조 작업 차량의 최적 이동경로 분석)

  • Park, Boyoung;Choi, Yosoon;Park, Han-Su
    • Tunnel and Underground Space
    • /
    • v.24 no.1
    • /
    • pp.11-20
    • /
    • 2014
  • This study analyzed the optimal routes of auxiliary vehicles in an open-pit mine that need to traverse the entire mine through many working points. Unlike previous studies which usually used the Dijkstra's algorithm, this study utilized a heuristic algorithm for the Traveling Salesman Problem(TSP). Thus, the optimal routes of auxiliary vehicles could be determined by considering the visiting order of multiple working points. A case study at the Pasir open-pit coal mine, Indonesia was conducted to analyze the travel route of an auxiliary vehicle that monitors the working condition by traversing the entire mine without stopping. As a result, we could know that the heuristic TSP algorithm is more efficient than intuitive judgment in determining the optimal travel route; 20 minutes can be shortened when the auxiliary vehicle traverses the entire mine through 25 working points according to the route determined by the heuristic TSP algorithm. It is expected that the results of this study can be utilized as a basis to set the direction of future research for the system optimization of auxiliary vehicles in open-pit mines.