• Title/Summary/Keyword: 전역최적화 기법

Search Result 166, Processing Time 0.022 seconds

Calibration of a Network Link Travel Cost Function with the Harmony Search Algorithm (화음탐색법을 이용한 교통망 링크 통행비용함수 정산기법 개발)

  • Kim, Hyun Myung;Hwang, Yong Hwan;Yang, In Chul
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.5
    • /
    • pp.71-82
    • /
    • 2012
  • Some previous studies adopted a method statistically based on the observed traffic volumes and travel times to estimate the parameters. Others tried to find an optimal set of parameters to minimize the gap between the observed and estimated traffic volumes using, for instance, a combined optimization model with a traffic assignment model. The latter is frequently used in a large-scale network that has a capability to find a set of optimal parameter values, but its appropriateness has never been demonstrated. Thus, we developed a methodology to estimate a set of parameter values of BPR(Bureau of Public Road) function using Harmony Search (HS) method. HS was developed in early 2000, and is a global search method proven to be superior to other global search methods (e.g. Genetic Algorithm or Tabu search). However, it has rarely been adopted in transportation research arena yet. The HS based transportation network calibration algorithm developed in this study is tested using a grid network, and its outcomes are compared to those from incremental method (Incre) and Golden Section (GS) method. It is found that the HS algorithm outperforms Incre and GS for copying the given observed link traffic counts, and it is also pointed out that the popular optimal network calibration techniques based on an objective function of traffic volume replication are lacking the capability to find appropriate free flow travel speed and ${\alpha}$ value.

Rotor Track and Balance of a Helicopter Rotor System Using Modern Global Optimization Schemes (최신의 전역 최적화 기법에 기반한 헬리콥터 동적 밸런싱 구현에 관한 연구)

  • You, Younghyun;Jung, Sung Nam;Kim, Chang Ju;Kim, Oe Cheul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.7
    • /
    • pp.524-531
    • /
    • 2013
  • This work aims at developing a RTB (Rotor Track and Balance) system to alleviate imbalances originating from various sources encountered during blade manufacturing process and environmental factors. The analytical RTB model is determined based on the linear regression analysis to relate the RTB adjustment parameters and their track and vibration results. The model is validated using the flight test data of a full helicopter. It is demonstrated that the linearized model has been correlated well with the test data. A hybrid optimization problem is formulated to find the best solution of the RTB adjustment parameters using the genetic algorithm combined with the PSO (Particle Swarm Optimization) algorithm. The optimization results reveal that both track deviations and vibration levels under various flight conditions become decreased within the allowable tolerances.

Blade Shape Optimization of Wind Turbines Using Genetic Algorithms and Pattern Search Method (유전자 알고리즘 및 패턴 서치 방법을 이용한 풍력 터빈 블레이드의 형상 최적화)

  • Yi, Jin-Hak;Sale, Danny
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.369-378
    • /
    • 2012
  • In this study, direct-search based optimization methods are applied for blade shape optimization of wind turbines and the optimization performances of several methods including conventional genetic algorithm, micro genetic algorithm and pattern search method are compared to propose a more efficient method. For this purpose, the currently available version of HARP_Opt (Horizontal Axis Rotor Performance Optimizer) code is enhanced to rationally evaluate the annual energy production value according to control strategies and to optimize the blade shape using pattern search method as well as genetic algorithm. The enhanced HARP_Opt code is applied to obtain the optimal turbine blade shape for 1MW class wind turbines. The results from pattern search method are compared with the results from conventional genetic algorithm and also micro genetic algorithm and it is found that the pattern search method has a better performance in achieving higher annual energy production and consistent optimal shapes and the micro genetic algorithm is better for reducing the calculation time.

Hybrid Approach for Solving Manufacturing Optimization Problems (제조최적화문제 해결을 위한 혼합형 접근법)

  • Yun, YoungSu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.6
    • /
    • pp.57-65
    • /
    • 2015
  • Manufacturing optimization problem is to find the optimal solution under satisfying various and complicated constraints with the design variables of nonlinear types. To achieve the objective, this paper proposes a hybrid approach. The proposed hybrid approach is consist of genetic algorithm(GA), cuckoo search(CS) and hill climbing method(HCM). First, the GA is used for global search. Secondly, the CS is adapted to overcome the weakness of GA search. Lastly, the HCM is applied to search precisely the convergence space after the GA and CS search. In experimental comparison, various types of manufacturing optimization problems are used for comparing the efficiency between the proposed hybrid approach and other conventional competing approaches using various measures of performance. The experimental result shows that the proposed hybrid approach outperforms the other conventional competing approaches.

Reservoir Operation by Tabu Search Method during Flood (타부탐색기법에 의한 홍수시 저수지 운영에 관한 연구)

  • Jeong Han Woo;Choi Seung An;Kim Hung Soo;Shim Myung Phil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1408-1412
    • /
    • 2005
  • 본 연구에서는 퍼지논리제어의 적용을 통해 홍수시 저수지의 방류량을 결정하는데 있어, 예측유입량 자료에 내재된 불확실성을 고려할 수 있는 저수지 운영 모형을 구성하고자 하였다. 제어규칙은 전문가들의 의견을 반영해 규칙기반을 설정하는데 이러한 일반적인 방법의 단점을 보완하고자 전역 최적화 기법인 타부탐색을 이용하여 제어규칙을 자동적으로 설정해 퍼지-타부탐색 모형을 구성하였다. 모형의 적용 결과, 첨두방류량이 감소되어 홍수조절 율이 개선되었으며 총 방류량도 감소되어 결과적으로 치수효과가 증대될 수 있음을 확인하였다. 또한 홍수 후에 가용할 수 있는 수자원의 양이 증가되어 이수적 차원에서 향상된 결과를 나타내었다.

  • PDF

Research of adaptive PSO algorithm for solving Optimal Power Flow Problem (전력계통 최적조류계산을 위한 적응 PSO 알고리즘 연구)

  • Park, Jong-Kook;Jeong, Hee-Myung;Park, June-Ho;Lee, Hwa-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.290-292
    • /
    • 2008
  • 전력계통이 점점 더 복잡해지고 광역화됨에 따라서 최적조류계산(Optimal Power Flow:OPF)은 전력계통에서 여러 가지 제약 조건을 만족하면서 경제적이고 안전하게 계통을 운영하기 위한 기법으로 더욱 중요성이 커지고 있다. 종래의 계산방법에는 비선형 계획법, 선형계획법 같은 수치해석적인 방법을 사용하였다. 그러나, 이러한 방법들은 전역 최적해를 구하기 위해서는 목적함수가 convex해야 한다. 또한, 계통 규모가 클 경우, 최적해 수렴이 안 되거나 수렴이 되더라도 시간이 많이 걸리는 단점이 있다. 최근에는 이러한 문제를 극복하고자 여러가지 진화연산기법들이 최적조류계산 문제에 적용되고 있다. 본 논문에서는 PSO알고리즘을 여러 개선된 형태로 비교 연구하여, 제안한 방법중 가장 최적화된 결론을 도출하기 위하여, IEEE 30,118 모선 계통의 최적조류계산 문제에 적용하였다.

  • PDF

Regression Model With High Reliability by Using Neural Networks (신경망을 이용한 고신뢰성의 회귀분석 모델)

  • Jo, Yong-Hyeon
    • The KIPS Transactions:PartB
    • /
    • v.8B no.4
    • /
    • pp.327-334
    • /
    • 2001
  • 본 논문에서는 기울기하강과 동적터널링이 조합된 학습알고리즘의 다층신경망을 이용한 고신회성의 회귀분석 모델을 제안하였다. 기울기하강은 빠른 수렴속도의 최적화가 가능하도록 하기 위함이고, 동적터널링은 국소최적해를 만났을 때 이를 벗어난 새로운 연결가중치를 설정하여 전역최적해로 수렴되도록 하기 위함이다. 또한 대용량의 입력 데이터를 통계적으로 독립인 특징들의 집합으로 변환시키는 주요성분분석 기법의 속성을 살려 학습데이터의 차원을 감소시킴으로서 고차원의 학습데이터에 따른 회귀분석 모델의 제약도 동시에 해결하였다. 제안된 기법의 신경망을 3개의 독립변수 패턴을 가진 암모니아 제조공정문제와 10개의 독립변수 패턴을 가진 자동차 연비문제에 각각 적용하여 시뮬레이션한 결과, 기존의 역전과 알고리즘의 신경망이나 주요성분분석에 의한 차원을 감소시키지 않은 학습패턴을 이용한 신경망보다 각각 더욱 우수한 학습성능과 회귀성능이 있음을 확인할 수 있었다. 또한 학습패턴의 영평균 정규화로 회귀용 신경망의 성능을 더욱 더 개선하였다.

  • PDF

Opitmal Design Technique of Nielsen Arch Bridges by Using Genetic Algorithm (유전자 알고리즘을 이용한 닐센아치교의 최적설계기법)

  • Lee, Kwang Su;Chung, Young Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.4
    • /
    • pp.361-373
    • /
    • 2009
  • Using the genetic algorithm, the optimal-design technique of the Nielsen arch bridge was proposed in this paper. The design parameters were the arch-rise ratio and the steel weight ratio of the Nielsen arch bridge, and optimal-design techniques were utilized to analyze the behavior of the bridge. The optimal parameter values were determined for the estimated optimal level. The parameter determination requires the standardization of the safety, utility, and economic concepts as the critical factors of a structure. For this, a genetic algorithm was used, whose global-optimal-solution search ability is superior to the optimization technique, and whose object function in the optimal design is the total weight of the structure. The constraints for the optimization were displacement, internal stress, and time and space. The structural analysis was a combination of the small displacement theory and the genetic algorithm, and the runtime was reduced for parallel processing. The optimal-design technique that was developed in this study was employed and deduced using the optimal arch-rise ratio, steel weight ratio, and optimal-design domain. The optimal-design technique was presented so it could be applied in the industry.

A Study on Distributed Particle Swarm Optimization Algorithm with Quantum-infusion Mechanism (Quantum-infusion 메커니즘을 이용한 분산형 입자군집최적화 알고리즘에 관한 연구)

  • Song, Dong-Ho;Lee, Young-Il;Kim, Tae-Hyoung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.527-531
    • /
    • 2012
  • In this paper, a novel DPSO-QI (Distributed PSO with quantum-infusion mechanism) algorithm improving one of the fatal defect, the so-called premature convergence, that degrades the performance of the conventional PSO algorithms is proposed. The proposed scheme has the following two distinguished features. First, a concept of neighborhood of each particle is introduced, which divides the whole swarm into several small groups with an appropriate size. Such a strategy restricts the information exchange between particles to be done only in each small group. It thus results in the improvement of particles' diversity and further minimization of a probability of occurring the premature convergence phenomena. Second, a quantum-infusion (QI) mechanism based on the quantum mechanics is introduced to generate a meaningful offspring in each small group. This offspring in our PSO mechanism improves the ability to explore a wider area precisely compared to the conventional one, so that the degree of precision of the algorithm is improved. Finally, some numerical results are compared with those of the conventional researches, which clearly demonstrates the effectiveness and reliability of the proposed DPSO-QI algorithm.

Performance Assessment of MDO Optimized 1-Stage Axial Compressor (MDO 최적화 설계기법을 이용해 설계된 1단 축류형 압축기의 성능평가)

  • Kang, Young-Seok;Park, Tae-Choon;Yang, Soo-Seok;Lee, Sae-Il;Lee, Dong-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.397-400
    • /
    • 2011
  • MDO Optimization for a low pressure axial compressor rotor has been carried out to improve aerodynamic performance and structural stability. Global optimized solution was obtained from an artificial neural network model with genetic algorithm. Optimized rotor model has a high blade loading near hub and near zero incidence flow angle near tip region to reduce the incidence loss and flow separation at trailing edge region. Also the rotor shape is converged to a trapezoid shape to reduce the maximum stress occurred at the root of the blade. Numerical simulation results show that rotor has 87.6% rotor efficiency and safety factor over than 3.

  • PDF