• Title/Summary/Keyword: 전송속도

Search Result 2,026, Processing Time 0.03 seconds

Implementation of a Self Controlled Mobile Robot with Intelligence to Recognize Obstacles (장애물 인식 지능을 갖춘 자율 이동로봇의 구현)

  • 류한성;최중경
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.5
    • /
    • pp.312-321
    • /
    • 2003
  • In this paper, we implement robot which are ability to recognize obstacles and moving automatically to destination. we present two results in this paper; hardware implementation of image processing board and software implementation of visual feedback algorithm for a self-controlled robot. In the first part, the mobile robot depends on commands from a control board which is doing image processing part. We have studied the self controlled mobile robot system equipped with a CCD camera for a long time. This robot system consists of a image processing board implemented with DSPs, a stepping motor, a CCD camera. We will propose an algorithm in which commands are delivered for the robot to move in the planned path. The distance that the robot is supposed to move is calculated on the basis of the absolute coordinate and the coordinate of the target spot. And the image signal acquired by the CCD camera mounted on the robot is captured at every sampling time in order for the robot to automatically avoid the obstacle and finally to reach the destination. The image processing board consists of DSP (TMS320VC33), ADV611, SAA7111, ADV7l76A, CPLD(EPM7256ATC144), and SRAM memories. In the second part, the visual feedback control has two types of vision algorithms: obstacle avoidance and path planning. The first algorithm is cell, part of the image divided by blob analysis. We will do image preprocessing to improve the input image. This image preprocessing consists of filtering, edge detection, NOR converting, and threshold-ing. This major image processing includes labeling, segmentation, and pixel density calculation. In the second algorithm, after an image frame went through preprocessing (edge detection, converting, thresholding), the histogram is measured vertically (the y-axis direction). Then, the binary histogram of the image shows waveforms with only black and white variations. Here we use the fact that since obstacles appear as sectional diagrams as if they were walls, there is no variation in the histogram. The intensities of the line histogram are measured as vertically at intervals of 20 pixels. So, we can find uniform and nonuniform regions of the waveforms and define the period of uniform waveforms as an obstacle region. We can see that the algorithm is very useful for the robot to move avoiding obstacles.

Performance Analysis of Implementation on IoT based Smart Wearable Mine Detection Device

  • Kim, Chi-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.12
    • /
    • pp.51-57
    • /
    • 2019
  • In this paper, we analyzed the performance of IoT based smart wearable mine detection device. There are various mine detection methods currently used by the military. Still, in the general field, mine detection is performed by visual detection, probe detection, detector detection, and other detection methods. The detection method by the detector is using a GPR sensor on the detector, which is possible to detect metals, but it is difficult to identify non-metals. It is hard to distinguish whether the area where the detection was performed or not. Also, there is a problem that a lot of human resources and time are wasted, and if the user does not move the sensor at a constant speed or moves too fast, it is difficult to detect landmines accurately. Therefore, we studied the smart wearable mine detection device composed of human body antenna, main microprocessor, smart glasses, body-mounted LCD monitor, wireless data transmission, belt type power supply, black box camera, which is to improve the problem of the error of mine detection using unidirectional ultrasonic sensing signal. Based on the results of this study, we will conduct an experiment to confirm the possibility of detecting underground mines based on the Internet of Things (IoT). This paper consists of an introduction, experimental environment composition, simulation analysis, and conclusion. Introduction introduces the research contents such as mines, mine detectors, and research progress. It consists of large anti-personnel mine, M16A1 fragmented anti-mine, M15 and M19 antitank mines, plastic bottles similar to mines and aluminum cans. Simulation analysis is conducted by using MATLAB to analyze the mine detection device implementation performance, generating and transmitting IoT signals, and analyzing each received signal to verify the detection performance of landmines. Then we will measure the performance through the simulation of IoT-based mine detection algorithm so that we will prove the possibility of IoT-based detection landmine.

Measurement of Regional Cerebral Blood Volume in Normal Rabbits on Perfusion-weighted MR Image (MR 관류강조영상에서 정상 가토의 국소 뇌혈류량 측정)

  • 박병래;예수영;나상옥;김학진;이석홍;전계록
    • Investigative Magnetic Resonance Imaging
    • /
    • v.4 no.2
    • /
    • pp.100-106
    • /
    • 2000
  • Purpose : To evaluate the usefulness of cerebral blood flow measurement applied to perfusion weighted image with short-scan time single shot gradient echo-planar technique in measuring cerebral blood volume(rCBV) of normal rabbits. Materials and methods : With 2.1-3.6 kg weighted rabbits, image is acquired when they are in supine position in children positioner. Perfusion weighted image is acquired to 44 seconds per 1 second successively. After 4 seconds later, Gd-DTPA 2ml are injected into int. jugular vein with 2 ml per second and normal saline is also injected after that. Same technique is applied 2 times per 30 minites in same rabbit. After Image is obtained in two part of cerebral cortex at vertex, convexity, in one of basal ganglia with choosing about $3-5{\textrm{mm}^2}$ areas. Curve of signal intensity changes in time sequence is drawn. After this images are transmitted by PC and software IDL, regional cerebral blood volume is measured with imaging processing program made by us. Results : With 22 of 24 rabbits, satisfactory 1-2 signal intensity versus time curve is made. Cerebral blood capacity and contrast media stay time (ST) is measured in two cerebral cortex and basal ganglia refering in parietal cerebral cortex. Mean focal cerebral blood flow capacity ratio in cortex was $0.97{\pm}0.35$ and in basal ganglia, $0.99{\pm}0.37$, mean contrast media stay time in cortex was $9.83{\pm}1.63$ sec and in basal gaiglia, $9.42{\pm}1.14$ sec, but there was no statistically significant difference between two areas ($\rho$=0.05). Conclusion : In cerebral cortex and basal ganglia, there is no difference in mean focal blood volume and mean contrast stay time. Therefore, PWI is useful in cerebral blood flow and early diagnosis, prognosis of cerebral ischemic disease. Hereafter, it is helpful in analysing cerebral blood flow changes with comparison difference in rCBV between normal tissue and ischemic tissue, and that with DWI finding in infarcted patient.

  • PDF

A Study on the RFID's Application Environment and Application Measure for Security (RFID의 보안업무 적용환경과 적용방안에 관한 연구)

  • Chung, Tae-Hwang
    • Korean Security Journal
    • /
    • no.21
    • /
    • pp.155-175
    • /
    • 2009
  • RFID that provide automatic identification by reading a tag attached to material through radio frequency without direct touch has some specification, such as rapid identification, long distance identification and penetration, so it is being used for distribution, transportation and safety by using the frequency of 125KHz, 134KHz, 13.56MHz, 433.92MHz, 900MHz, and 2.45GHz. Also it is one of main part of Ubiquitous that means connecting to net-work any time and any place they want. RFID is expected to be new growth industry worldwide, so Korean government think it as prospective field and promote research project and exhibition business program to linked with industry effectively. RFID could be used for access control of person and vehicle according to section and for personal certify with password. RFID can provide more confident security than magnetic card, so it could be used to prevent forgery of register card, passport and the others. Active RFID could be used for protecting operation service using it's long distance date transmission by application with positioning system. And RFID's identification and tracking function can provide effective visitor management through visitor's register, personal identification, position check and can control visitor's movement in the secure area without their approval. Also RFID can make possible of the efficient management and prevention of loss of carrying equipments and others. RFID could be applied to copying machine to manager and control it's user, copying quantity and It could provide some function such as observation of copy content, access control of user. RFID tag adhered to small storage device prevent carrying out of item using the position tracking function and control carrying-in and carrying-out of material efficiently. magnetic card and smart card have been doing good job in identification and control of person, but RFID can do above functions. RFID is very useful device but we should consider the prevention of privacy during its application.

  • PDF

Radiation Oncology Digital Image Chart 8nd Digital Radiotherapv Record System at Samsung Medical Center (디지털 화상 병력 시스템과 디지털 방사선치료 기록 시스템의 개발과 사용 경험)

  • Huh Seung Jae;Ahn Yong Chan;Lim Do Hoon;Cho Chung Keun;Kim Dae Yong;Yeo Inhwan;Kim Moon Kyung;Chang Seung Hee;Park Suk Won
    • Radiation Oncology Journal
    • /
    • v.18 no.1
    • /
    • pp.67-72
    • /
    • 2000
  • Background :The authors have developed a Digital image chart(DIC) and digital Radiotherapy Record System (DRRS). We have evaluated the DIC and DRRS for reliability, usefulness, ease of use, and efficiency. Materials and Methods :The basic design of the DIC and DRRS was to build an digital image database of radiation therapy Patient records for a more efficient and timely flow of critical image information throughout the department. This system is a submit of comprehensive radiation oncology management system (C-ROMS) and composed of a picture archiving and communication system (PACS), a radiotherapy information database, and a radiotherapy imaging database. The DIC and DRRS were programmed using Delphi under a Windows 95 environment and is capable of displaying the digital images of patients identification photos, simulation films, radiotherapy setup, diagnostic radiology images, gross lesion Photos, and radiotherapy Planning isodose charts with beam arrangements. Twenty-three clients in the department are connected by Ethernet (10 Mbps) to the central image server (Sun Ultra-sparc 1 workstation). Results :From the introduction of this system in February 1998 through December 1999, we have accumulated a total of 15,732 individual images for 2,556 patients. We can organize radiation therapy in a 'paperless' environment in 120 patients with breast cancer. Using this system, we have succeeded in the prompt, accurate, and simultaneous access to patient care information from multiple locations throughout the department. This coordination has resulted in improved operational efficiency within the department. Conclusion :The authors believe that the DIC and DRRS has contributed to the improvement of radiation oncology department efficacy as well as to time and resource savings by providing necessary visual information throughout the department conveniently and simultaneously. As a result, we can also achieve the 'paperless' and 'filmless' practice of radiation oncology with this system.

  • PDF

A study on optical coherence tomography system using optical fiber (광섬유를 이용한 광영상 단층촬영기에 관한연구)

  • 양승국;박양하;장원석;오상기;김현덕;김기문
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.5-9
    • /
    • 2004
  • In this paper, we studied the OCT(Optical Coherence Tomography) system which it has been extensively studied because of having some advantages such as high resolution cross-sectional images, low cost, and small size configuration. A basic principle of OCT system is Michelson interferometer. The characteristics of light source determine the resolution and the transmission depth. As a results, the light source have a commercial SLD with a central wavelength of 1,285 nm and FWHM(Full Width at Half Maximum) of 35.3 nm. The optical delay line part is necessary to equal of the optical path length with scattered light or reflected light from sample. In order to equal the optical path length, the stage which is attached to reference mirror is moved linearly by step motor And the interferometer is configured with the Michelson interferometer using single mod fiber, the scanner can be focused of the sample by using the reference arm. Also, the 2-dimensional cross-sectional images were measured with scanning the transverse direction of the sample by using step motor. After detecting the internal signal of lateral direction at a paint of sample, scanner is moved to obtain the cross-sectional image of 2-demensional by using step motor. Photodiode has been used which has high detection sensitivity, excellent noise characteristic, and dynamic range from 800 nm to 1,700 nm. It is detected mixed small signal between noise and interference signal with high frequency After filtering and amplifying this signal, only envelope curve of interference signal is detected. And then, cross-sectional image is shown through converting this signal into digitalized signal using A/D converter. The resolution of the OCT system is about 30$\mu\textrm{m}$ which corresponds to the theoretical resolution. Also, the cross-sectional image of ping-pong ball is measured. The OCT system is configured with Michelson interferometer which has a low contrast because of reducing the power of feedback interference light. Such a problem is overcomed by using the improved inteferometer. Also, in order to obtain the cross-sectional image within a short time, it is necessary to reduce the measurement time for improving the optical delay line.

  • PDF