• Title/Summary/Keyword: 전속도 유동

Search Result 6, Processing Time 0.016 seconds

DEVELOPMENT OF A PRECONDITIONED ADJOINT METHOD FOR ALL-SPEED FLOW ANALYSES OF QUASI ONE-DIMENSIONAL EULER EQUATIONS (준 일차원 Euler 방정식의 전속도 유동해석을 위한 예조건화 수반변수 기법의 개발)

  • Lee, H.R.;Lee, S.
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.27-34
    • /
    • 2015
  • In this study, preconditioned adjoint equations for the quasi one-dimensional Euler equations are developed, and their computational benefit at all speed is assessed numerically. The preconditioned adjoint equations are derived without any assumptions on the preconditioning matrix. The dissipation for Roe type numerical flux is also suggested to scale the dissipation term properly at low Mach numbers as well as at high Mach numbers. The new preconditioned method is validated against analytical solutions. The convergence characteristics over wide range of Mach numbers is evaluated. Finally, several inverse designs for the nozzle are conducted and the applicability of the method is demonstrated.

A New Pressure-Based PISO-Finite Element Method for Navier-Stokes Equations in All Speed Range (Navier-Stokes 점성유동의 전속도 영역 해석을 위한 새로운 압력기반 PISO-유한요소법)

  • Shim E. B.;Chang K. S.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.112-122
    • /
    • 1996
  • A finite element scheme using the concept of PISO method has been developed to solve the Navier-Stokes viscous flows in all speed range. This scheme includes development of new pressure equation that retains both the hyperbolic term related with the density variation and the elliptic term reflecting the incompressibility constraint. The present method is applied to the incompressible two-dimensional driven cavity flow problems(Re=100, 400 and 1,000). For compressible flows, the Carter plate problem(M=3 and Re=1,000) is computed. Finally, we have simulated the shock-boundary layer interaction(M=2 and Re=2.96×10/sup 5/), a more difficult problem, and compared its results with the experiment to demonstrate the shock capturing capability of the present solution algorithm.

  • PDF

A Time-Derivative Preconditioning Method for Compressible Flows at All Speeds (Preconditioning을 이용한 전속도 영역에 대한 압축성 유체유동해석)

  • 최윤호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1840-1850
    • /
    • 1994
  • Enhancement of numerical algorithms for low speed compressible flow will be considered. Contemporary time-marching algorithm has been widely accepted and applied as the method of choice for transonic, supersonic and hypersonic flows. In the low Mach number regime, time-marching algorithms do not fare as well. When the velocity is small, eigenvalues of the system of compressible equations differ widely so that the system becomes very stiff and the convergence becomes very slow. This characteristic can lead to difficulties in computations of many practical engineering problems. In the present approach, the time-derivative preconditioning method will be used to control the eigenvalue stiffness and to extend computational capabilities over a wide range of flow conditions (from very low Mach number to supersonic flow). Computational capabilities of the above algorithm will be demonstrated through computation of a variety of practical engineering problems.

BARAM: VIRTUAL WIND-TUNNEL SYSTEM FOR CFD SIMULATION (BARAM: 전산유체 해석을 위한 가상풍동 시스템)

  • Kim, Min Ah;Lee, Joong-Youn;Gu, Gibeom;Her, Young-Ju;Lee, Sehoon;Park, Soo Hyung;Kim, Kyu Hong;Cho, Kumwon
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.28-35
    • /
    • 2015
  • BARAM system that means 'wind' in Korean has been established as a virtual wind tunnel system for aircraft design. Its aim is to provide researchers with easy-to-use, production-level environment for all stages of CFD simulation. To cope with this goal an integrated environment with a set of CFD solvers is developed and coupled with an highly-efficient visualization software. BARAM has three improvements comparing with previous CFD simulation environments. First, it provides a new automatic mesh generation method for structured and unstructured grid. Second, it also provides real-time visualization for massive CFD data set. Third, it includes more high-fidelity CFD solvers than commercial solvers.

Solid-liquid 2phase flow in a concentric annulus with rotation of the inner cylinder (안쪽축이 회전하는 동심환형관내 고-액 2상 유동연구)

  • Kim, Young-Ju;Han, Sang-Mok;Woo, Nam-Sub;Hwang, Young-Kyu
    • Journal of Energy Engineering
    • /
    • v.18 no.2
    • /
    • pp.87-92
    • /
    • 2009
  • An experimental investigation is conducted to study a 2-phase vertically upward hydraulic transport of solid particles by water and non-Newtonian fluids in a slim hole concentric annulus with rotation of the inner cylinder. Rheology of particulate suspensions in viscoelastic fluids is of importance in many applications such as particle removal from surfaces, transport of proppants in fractured reservoir and cleaning of drilling holes, etc. In this study, a clear acrylic pipe was used in order to observe the movement of solid particles. Annular velocities varied from 0.3 m/s to 2.0 m/s. The mud systems included fresh water and CMC solutions. Main parameters considered in the study were inner-pipe rotation speed, fluid flow regime and particle injection rate. A particle rising velocity and pressure drop in annulus have been measured for fully developed flows of water and of aqueous solutions. For both water and 0.2% CMC solutions, the higher the concentration of the solid particles is, the larger the pressure gradients become.

Flow Analysis of the Plain Seal with Injection (분사를 수반하는 평씨일 내의 유동해석)

  • 이관수;김우승;김기연;김창호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.795-802
    • /
    • 1992
  • A numerical analysis is performed on the turbulent flow in the plain seal with injection. The parameters used in this study are as follows : Reynolds number, rotation speed, injection speed, clearance ratio, injection angle, and axial injection location. Flow pattern and leakage performance due to the variation of parameters are investigated. SIMPLER algorithm is used to solve the Navier-Stokes equation governing steady, incompressible turbulent flow and standard K- .epsilon. turbulent model is used to consider the turbulence effects. The leakage performance is significantly enhanced with injection. The increases of the injection flow rate and be rotation speed of the shaft cause the leakage performance to the increased. With the increase of the Reynolds number the leakage performance is diminished. At the injection angle of 90deg, the leakage coefficient has a minimum value. The pressure drop has a maximum value at axial center location but the injection location has little effect on the pressure drop. Clearance ratio has a significant effect on the pressure drop.