• Title/Summary/Keyword: 전산시뮬레이션

Search Result 614, Processing Time 0.025 seconds

A Landscape Information System for Managing the Urban Landscape (도시경관 관리를 위한 경관정보시스템의 개발)

  • 오규식;박경호
    • Spatial Information Research
    • /
    • v.5 no.2
    • /
    • pp.161-175
    • /
    • 1997
  • In spite of intense advances in the economy and technological progress which include massive and high-rise developments, landscape resources have either been destroyed or left to deteriorate. In recent years, efforts towards landscape management have emerged in the form of legislation and policies. However, relevant computer tools have unfortunately been insufficient in the field of landscape management. In addition, although there has been much research conducted for urban landscape management, pertinent information has not been recorded or managed efficiently. Therefore, this study developed a Landscape Information System for the purpose of managing urban landscape infOlmation and analyzing visual impacts in relation to urban development projects. Main functions of the Landscape Information System consist of the following: inputting and managing the attribute data as well as graphic data, querying attributes of urban landscape, and analyzing landscape impacts of developments. A case study was conducted for downtown Seoul. Using the system, a series of visual impact analyses were implemented at major viewpoints in the area. The results have shown that valuable landscape resources could be damaged by proposed development projects. Thus, the Landscape Information System developed in this study can be used as a major tool to manage urban landscape information efficiently and as the basis for decision-making regarding landscape simulation and visual impact analysis.

  • PDF

Numerical Analysis for Thermal-deformation Improvement in TSOP(Thin Small Outline Package) by Anti-deflection Adhesives (TSOP(Thin Small Outline Package) 열변형 개선을 위한 전산모사 분석)

  • Kim, Sang-Woo;Lee, Hai-Joong;Lee, Hyo-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.3
    • /
    • pp.31-35
    • /
    • 2013
  • TSOP(Thin Small Outline Package) is the IC package using lead frame, which is the type of low cost package for white electronics, auto mobile, desktop PC, and so on. Its performance is not excellent compared to BGA or flip-chip CSP, but it has been used mostly because of low price of TSOP package. However, it has been issued in TSOP package that thermal deflection of lead frame occurs frequently during molding process and Au wire between semiconductor die and pad is debonded. It has been required to solve this problem through substituting materials with low CTE and improving structure of lead frame. We focused on developing the lead frame structure having thermal stability, which was carried out by numerical analysis in this study. Thermal deflection of lead frame in TSOP package was simulated with positions of anti-deflection adhesives, which was ranging 198 um~366 um from semiconductor die. It was definitely understood that thermal deflection of TSOP package with anti-deflection adhesives was improved as 30.738 um in the case of inside(198 um), which was compared to that of the conventional TSOP package. This result is caused by that the anti-deflection adhesives is contributed to restrict thermal expansion of lead frame. Therefore, it is expected that the anti-deflection adhesives can be applied to lead frame packages and enhance their thermal deflection without any change of substitutive materials with low CTE.

A Study on the Manoeuvrability as Function of Stern Hull Form in Shallow Water (선미형상을 고려한 천수역에서의 조종성능에 관한 연구)

  • Lee, Sungwook
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.552-557
    • /
    • 2015
  • A numerical simulation studies were performed to investigate a manoeuvring characteristics as function of stern hull form with the mathematical model. In order to consider the effect of the stern hull form and obtain the manoeuvring characteristics, a parameter($C_{wa}$) which is aft. water plane area coefficient is modified. Because modifying $C_{wa}$(${\pm}2%$) means that the stern hull form is modified to V-type or U-type, the numerical simulation was performed with this modified $C_{wa}$. A changing trend for the manoeuvring characteristics not only in deep water but also in shallow water such as directional stability, turning and zig-zag was investigated and presented as the results. Present study showed that the manoeuvrability in shallow water largely changed when the draught and water depth ratio(=d/H) become 0.5, and the stern hull form can affect to the manoeuvrability of a vessel navigating in restricted water depth. In addition, it showed that approaching the stern hull to U-type makes the advance and tactical diameter of turning motion large and the overshoot angle of zig-zag motions small. Otherwise, it showed approaching the stern hull form to V-type makes the advance and tactical diameter of turning motion small and the overshoot angle of zig-zag motions large in the present study.

Design Optimization of Dual-Shell and Tube Heat Exchanger for Exhaust Waste Heat Recovery of Gas Heat Pump (GHP 배열회수용 이중 쉘-튜브형 배기가스 열교환기의 설계 최적화)

  • Lee, Jin Woo;Shin, Kwang Ho;Choi, Song;Chung, Baik Young;Kim, Byung Soon
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.1
    • /
    • pp.23-28
    • /
    • 2015
  • In this paper, we performed the design optimization dual-shell and tube heat exchanger on exhaust waste heat recovery for gas heat pump using CFD and RSM. CFD analysis is useful to design the complex structure such as double shell and tube heat exchanger. By computer simulation, engineers can assess the feasibility of the given design factors and change them to get a better design. But if one wishes to perform complex analysis on the simulation, such dual-shell and tube heat exchanger for GHP, the computational time can become overwhelming. CFD is powerful but it takes a lot of time for complex structure. Therefore, the CFD analysis is minimized by the optimization using the RSM method. As a result, the number of baffle and tube are optimized by 6 baffles and 25 tubes for heat transfer and flow friction. And then pressure drop and heat transfer is improved about 12.2%. We confirm the design optimization using CFD and RSM is useful on complex structure of heat exchanger.

Development of the Pre-treatment Technology for LNG-FPSO (LNG-FPSO용 천연가스 전처리 기술 개발)

  • Jee, Hyun-Woo;Lee, Sun-Keun;Jung, Je-Ho;Min, Kwang-Joon;Kim, Mi-Jin
    • Plant Journal
    • /
    • v.9 no.3
    • /
    • pp.38-42
    • /
    • 2013
  • Submarine gas fields have focused because of the increasing fuel cost, the environmental regulations, and the safety & NIMBY problems. LNG-FPSO which is available for acid gas removal, recovery of the condensate & LPG and Liquefaction in topside process is one of high technology offshore structures. On the other hands, it is necessary to verify the pre-treatment efficiency by the ship motion and to apply to the design for LNG-FPSO. This study is to develop the pre-treatment technology for LNG-FPSO as taking account to the process efficiency by ship motion effects and the area optimization. Based on the simulation results, it founds that hybrid process shows the low circulate rate, the low heat duty and the small size of column dimensions compared to typical amine process. It will be verified the process efficiency in the various conditions by sea states as performing the 6-DOF motion test and CFD simulation.

  • PDF

Numerical Sudy on Bubbling Fluidized Bed Reactor for Fast Pyrolysis of Waste Lignocelluosic Biomass (폐목질계 바이오매스의 급속열분해 기포유동층 반응기에 대한 수치해석적 연구)

  • Lee, Ji Eun;Choi, Hang Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.10
    • /
    • pp.710-716
    • /
    • 2013
  • New and renewable energy sources have drawn attention because of climate change. Many studies have been carried out in waste-to-energy field. Fast pyrolysis of waste lignocelluosic biomass is one of the waste-to-energy technologies. Bubbling fluidized bed (BFB) reactor is widely used for fast pyrolysis of the biomass. In BFB pyrolyzer, bubble behavior influences on the chemical reaction. Accordingly, in the present study, hydrodynamic characteristics and fast pyrolysis reaction of waste lignocellulosic biomass occurring in a BFB pyrolyzer are scrutinized. The computational fluid dynamics (CFD) simulation of the fast pyrolysis reactor is carried out by using Eulerian-Granular approach. And two-stage semi-global kinetics is applied for modeling the fast pyrolysis reaction of waste lignocellulosic biomass. To summarize, generation and ascendant motion of bubbles in the bed affect particle behavior. Thus biomass particles are well mixed with hot sand and consequent rapid heat transfer occurs from sand to biomass particles. As a result, primary reaction is observed throughout the bed. And reaction rate of tar formation is the highest. Consequently, tar accounts for 66wt.% of the product gas. However, secondary reaction occurs mostly in the freeboard. Therefore, it is considered that bubble behavior and particle motions hardly influences on the secondary reaction.

Characterization of Physical Processes and Secondary Particle Generation in Radiation Dose Enhancement for Megavoltage X-rays (MV X선의 방사선 선량 증강 현상에서 물리적 특성과 이차입자의 발생)

  • Hwang, Chulhwan;Kim, JungHoon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.791-799
    • /
    • 2019
  • We evaluated the physical properties that occur to dose enhancement and changes from secondary particle production resulting from the interaction between enhancement material. Geant4 was used to perform a Monte Carlo simulation, and the medical internal radiation dose (MIRD) head phantom were employed. X-rays of 4, 6, 10, 15, 18, and 25 MV were used. Aurum (Au) and gadolinium (Gd) were applied within the tumor volume at 10, 20, and 30 mg/g, and an experiment using soft tissue exclusively was concomitantly performed for comparison. Also, particle fluence and initial kinetic energy of secondary particle of interaction were measured to calculate equivalent doses using the radiation weight factor. The properties of physical interaction by the radiation enhancement material showed the great increased in photoelectric effect as compared to the compton scattering and pair production, occurred with the highest, in aurum and gadolinium it is shown in common. The photonuclear effect frequency increased as the energy increased, thereby increasing secondary particle production, including alpha particles, protons, and neutrons. During dose enhancement using aurum, a maximum 424.25-fold increase in the equivalent dose due to neutrons was observed. This study was Monte Carlo simulation corresponds to the physical process of energy transmission in dose enhancement. Its results may be used as a basis for future in vivo and in vitro experiments aiming to improve effects of dose enhancement.

A Study on the Flow Uniformity and Characteristics of Exhaust gas in Diesel Particulate Filter/Diesel Oxidation Catalyst of Ship Diesel Reduction System by Computational Fluid Dynamics (CFD에 의한 선박용 DPF/DOC내 배기가스의 유동 균일도 및 특성 연구)

  • Kim, YunJi;Han, Danbee;Baek, Youngsoon
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.153-160
    • /
    • 2019
  • As air pollution becomes more serious due to the increased number of diesel vessel operations, ship regulations on harmful emissions strengthen. Therefore, the development of a diesel exhaust after-treatment system for ships is required, and the higher the flow uniformity of the exhaust treatment system, the higher the treatment efficiency. With the computer software ANSYS Fluent, pressure drop and flow uniformity were used in this study to simulate flow rate with and without a baffle in both a Diesel Oxidation Catalyst (DOC) and Diesel Particulate Filter (DPF) system. The system pressure drop was found to be 38 to 40 mbar in the existing system condition, and the flow uniformity was approximately 84 to 92% at the inlet and outlet of the DOC. When the baffle was installed inside the system, the pressure increased and the flow uniformity was lowered due to an increase in flow rate. When the exhaust gas flow was reduced by 50% from $7,548kg\;h^{-1}$ to $3,772kg\;h^{-1}$, the flow uniformity at the inlet and outlet of the DOC increased by approximately 1 to 3% due to the low flow rate. In the case of DPF, the flow uniformity of exhaust gas was 98 to 99% because the uneven flow proceeded after uniformly flowing from the DOC.

Numerical Modeling for Effect on Bund Overtopping Caused by a Catastrophic Failure of Chemical Storage Tanks (저장시설의 순간 전량 방출 시 방류벽의 월파 효과에 대한 수치모델링)

  • Min, Dong Seok;Phark, Chuntak;Jung, Seungho
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.42-50
    • /
    • 2019
  • As the industry develops in Korea, the use of hazardous chemicals is increasing rapidly and chemical accidents are increasing accordingly. Most of the chemical accidents are caused by leaks of hazardous chemicals, but there are also accidents in which all the substances are released instantaneously due to sudden high temperature/pressure or defection of the storage tanks. This is called catastrophic failure and its frequency is very low, but consequence is very huge when it occurs. In Korea, there were 15 casualties including three deaths due to catastrophic rupture of water tank in 2013, and 64 instances of failures from 1919 to 2004 worldwide. In case of catastrophic failure, it would be able to overflow outside the bund that reduces the evaporation rate and following consequence. This incident is called overtopping. Overseas, some researchers have been studying the amount of external overflow depending on bund conditions in the event of such an accident. Based on the previous research, this study identified overtopping fraction by condition of bund in accordance with Korea Chemicals Controls Act Using CFD simulation. As a result, as the height increases and the distance to the facility decreases while meeting the minimum standard of the bund capacity, the overtopping effect has decreased. In addition, by identifying the effects of overtopping according to atmospheric conditions, types of materials and shapes of bunds, this study proposes the design of the bund considering the effect of overtopping caused by catastrophic failure with different bund conditions.

Investigation of Effects of Lightning and Icing on an e-VTOL UAM Aircraft and a Proposal for Certification Guidance (e-VTOL UAM 항공기의 낙뢰 및 결빙 영향성 분석 및 인증기술에 관한 연구)

  • Kim, Yun-Gon;Jo, Hyeonseung;Jo, Jae-Hyeon;Park, Se-Woong;Myong, Rho-Shin
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.3
    • /
    • pp.45-56
    • /
    • 2021
  • Demand for UAM (Urban Air Mobility) aircraft is rapidly increasing in countries around the world due to the problem of traffic congestion in urban areas. Through research and development, various e-VTOL aircraft concepts are being prepared for commercialization, for which airworthiness certification is required, since it is a manned transportation mode for people to board. Factors that pose a fatal threat to the safe operation of UAM aircraft include lightning strikes that can cause damage to structures and disturb the navigation system, as well as icing that impairs flight stability. Since the current UAM aircraft-related lightning and icing certification technology development is insufficient, there is need to develop appropriate airworthiness certification guidelines. In this study, after analyzing the laws and regulations related to aircraft by the FAA and the EASA, we tried to incorporate the lightning and icing certification guidelines for the UAM aircraft. We also analyzed the effects of lightning and icing on UAM aircraft using computational simulation, and presented the basis for establishing practical guidelines for the certification of UAM aircraft to be adopted in the future.