Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.402-402
/
2019
최근 기후변화에 따른 용수사용량의 계절별 변화가 나타나고 있다. 따라서, 효율적인 용수 관리에 대한 관심은 배수지 및 송수 시스템의 운영을 넘어 정수장의 운영에서도 그 변화가 나타나고 있다. 수질관리 측면에 다소 집중되었던 정수장 운영의 중요도는 수량을 함께 관리하는 방향으로 변화할 것으로 전망되며, 따라서 취수 단계에서부터 용수 공급의 전 과정을 고려하는 지능형 정수장 관리시스템이 주목받고 있다. 상수도 공급을 위한 정수장의 운영은 크게 원수의 취수 및 도수, 정수처리, 정수된 용수의 저장, 배수 및 급수의 과정으로 구분할 수 있다. 이때, 원수의 취수와 도수, 정수처리 과정에는 상대적으로 긴 시간이 소요되므로, 정수장의 운영 관리자는 이러한 지연시간을 감안해서 배수지의 상태를 예측하여 취수계획을 결정해야 한다. 한편, 정수장 시설을 운영하기 위해서는 전력이 소모되며, 산업전력 단가는 시간대별 변동폭이 큰 것으로 알려져 있다. 따라서, 정수장의 효율적인 운영을 위해서는 용수의 수요예측과 배수지 수위변동, 취수 및 정수설비의 규모 등을 고려하는 동시에, 전력 단가가 낮은 시간대에 설비를 집중적으로 운영할 수 있는 계획을 수립해야 한다. 본 연구에서는 선형계획법(Linear Programming, LP)을 이용하여, 수요예측을 바탕으로 장기취수계획을 수립하기 위한 방안을 세 가지로 구분하였으며, 각각의 장단점을 다음과 같이 예상하였다. 1) 24시간 간격으로 시간당 취수계획을 수립하는 최적화 방안, 2) 24시간의 시간당 취수계획을 1시간 간격으로 수립하는 실시간 최적화 방안, 3) 전체 모의기간 동안의 시간당 취수계획을 한번에 수립하는 최적화 방안. 24시간 간격 최적화는 수립 및 적용이 간단한 반면, 실시간 수요변화를 고려할 수 없어 단위시간(24시간) 후반부의 최적화 효율이 떨어지는 단점이 있다. 1시간 간격의 실시간 최적화는 수요변화를 가장 정확히 반영하는 반면, 최적화 수행 횟수가 증가하는 단점이 있다. 전체 모의기간 최적화는 장기 수요예측을 고려한 탄력적 취수계획을 수립하는 반면, 수요예측의 불확실성에 따른 오차 발생위험이 크다. 본 연구에서는 국내 H 정수장을 대상으로 각각의 최적 취수계획 수립 방안을 정수장 운영의 안정성, 탄력성, 경제성 등을 기준으로 비교, 분석하였다.
Ilyosbek Rakhimjon-Ugli Numonov;Bo Peng;Yanxia Li;Yuldashev Izzatillo Hakimjon Ugli;TaeO Lee;Tae-Kook Kim
Journal of Internet of Things and Convergence
/
v.10
no.6
/
pp.49-55
/
2024
In this paper, AI models for predicting peak power usage were developed and comparatively analyzed using data collected from the Jeju Samdasoo factory through a big data collection system based on IoT sensing technology. The LSTM (Long Short-Term Memory) model demonstrated the highest prediction accuracy for univariate time-series data, achieving an R2 of 0.98, RMSE of 0.039, and MAE of 0.026. Meanwhile, the XGBoost (eXtreme Gradient Boosting) model effectively handled multivariate data, achieving an R2 of 0.93, RMSE of 0.018, and MAE of 0.013. Various data preprocessing methods and feature combinations were experimentally applied to optimize model performance, highlighting the significant impact of preprocessing and variable selection on prediction accuracy. The findings suggest that optimized AI models for peak power prediction can reduce power costs and achieve approximately 10-15% reductions in carbon emissions. This study offers companies pursuing ESG (environmental, social, and governance) management practical and specific strategies for achieving sustainability, while demonstrating the applicability of the predictive model across various industries, including manufacturing, logistics, and smart factories.
산업이 발달함에 따라 전기는 우리 일상생활에 있어 없어서는 안 될 중요한 요소이나, 전기는 시각적인 흐름을 볼 수가 없어 전기설비나 전기용품 사용중에 발생할 수 전기사고에 대해서 사전에 사고를 감지하고 예측하기 어려워 사고 위험성에 대하여 무방비 상태가 되나, 전력 사용량, 전기 위험도 분석 등에 대한 기술은 그에 미치지 못하고 있다. 이에 전기 사용 상태에 대한 분석이 가능하기 위해서는 분전반내부에 분석 회로장착이 필요하며, 전류 분석을 위해서는 전류센서(CT)가 구성되어 져야 하고, 이 전류신호는 data cable을 통하여 분석보드로 전송 되어져야 한다. 이는 수배전반 내부에 전력 케이블과의 접촉 문제, 결선 의 어려움 등이 있어 이를 해결 하고자 통신기능을 갖는 센서 내장형 차단기를 개발하고자 한다.
The Transactions of The Korean Institute of Electrical Engineers
/
v.57
no.8
/
pp.1342-1348
/
2008
One important objective of the electricity market is to decrease the price by ensuring stability in the market operation. Interconnected to this is another objective; namely, to realize sustainable consumption of electricity by equitably distributing the effects and benefits of participating in the market among all participants of the industry. One method that can help achieve these objectives is the ^{(R)}$demand-response program, - which allows for active adjustment of the loadage from the demand side in response to the price. The demand-response program requires a customer baseline load (CBL), a criterion of calculating the success of decreases in demand. This study was conducted in order to calculate undistorted CBL by analyzing the correlations between such external or seasonal factors as temperature, humidity, and discomfort indices and the amounts of electricity consumed. The method and findings of this study are accordingly explicated.
Journal of The Institute of Information and Telecommunication Facilities Engineering
/
v.9
no.3
/
pp.107-111
/
2010
This paper is concerned with data center remote management service for demanding forecasting and reduction of energy usage. More particularly, intelligent server rack, mounted on inside of the data center, collects information about energy usage and temperature per server. Using this information, management platform forecasts energy demand in the future and automatically makes report according green environment raw. By providing the remote management service through remote terminals, users are not tied to a time and place to control device inside the data center. In this way, the data center remote management service enhances operability of the facility.
한전에서는 배전용 변압기의 부하관리를 위하여 전국사업소에 산재해 있는 변압기를 NDIS1) 부하관리 시스템으로 데이터 베이스화 하고, 각 변대에 수용되어 있는 고객의 월별 전기사용량을 추출하기 위하여 영업정보시스템과 연계하여 변압기, 배전선 개체관리는 물론 부하계산, 부하실적 및 부하예측 자료를 관리하고 있다. 이중 전등부하는 고객의 월간 사용전력량(kWh)과 최대부하(kVA)의 부하특성에 따른 상관 계수를 산정하여 이를 상관식에 적용하여 최대부하를 산출하고 있으며, 동력부하는 계약전력 및 종합수용률을 적용하여 부하전류를 계산하고 있으나 최근 고객의 냉방부하 급증으로 인하여 고객의 계약전력과 실제 설비용량과의 많은 차이가 발생하고 있어 변압기 관리에 어려움이 있고, 과부하로 인하여 변압기가 소손되는 사례도 발생하고 있다. 따라서 변압기 무선부하 감시시스템으로 측정한 결과를 토대로 변압기 이용율 계산의 정확도를 높이고 변압기 관리를 효율적으로 할 필요가 있다.
Park, Jin-Hyoung;Lee, Heon-Gyu;Shin, Jin-Ho;Ryu, Keun-Ho
The KIPS Transactions:PartD
/
v.16D
no.3
/
pp.307-316
/
2009
In this paper, the spatiotemporal data mining methodology for detecting a cycle of power consumption pattern with the change of time and spatial was proposed, and applied to the power consumption data collected by GIS-AMR system with an aim to use its resulting knowledge in real world applications. First, partial clustering method was applied for cluster analysis concerned with the aim of customer's power consumption. Second, the patterns of customer's power consumption data which contain time and spatial attribute were detected by 3D cube mining method. Third, using the calendar pattern mining method for detection of cyclic patterns in the various time domains, the meanings and relationships of time attribute which is previously detected patterns were analyzed and predicted. For the evaluation of the proposed spatiotemporal data mining, we analyzed and predicted the power consumption patterns included the cycle of time and spatial feature from total 266,426 data of 3,256 customers with high power consumption from Jan. 2007 to Apr. 2007 supported by the GIS-AMR system in KEPRI. As a result of applying the proposed analysis methodology, cyclic patterns of each representative profiles of a group is identified on time and location.
Journal of Korean Society of Industrial and Systems Engineering
/
v.42
no.1
/
pp.129-136
/
2019
In this study, we proposed a model for forecasting power energy demand by investigating how outside temperature at a given time affected power consumption and. To this end, we analyzed the time series of power consumption in terms of the power spectrum and found the periodicities of one day and one week. With these periodicities, we investigated two time series of temperature and power consumption, and found, for a given hour, an approximate linear relation between temperature and power consumption. We adopted an exponential smoothing model to examine the effect of the linearity in forecasting the power demand. In particular, we adjusted the exponential smoothing model by using the variation of power consumption due to temperature change. In this way, the proposed model became a mixture of a time series model and a regression model. We demonstrated that the adjusted model outperformed the exponential smoothing model alone in terms of the mean relative percentage error and the root mean square error in the range of 3%~8% and 4kWh~27kWh, respectively. The results of this study can be used to the energy management system in terms of the effective control of the cross usage of the electric energy together with the outside temperature.
본 고는 지속적 개발 론에 입각한 적극적인 에너지수요 관리정책을 추진한다는 전제하에 2001년과 2006년의 우리 나라 가정부문 전력수요를 전망하고자 한다. 본 고는 지속적 개발 시나리오를 추정함에 있어서 기존의 계량모형보다 일종의 공학적 모형인 공정분석(process analysis)을 선호한다. 계량모형이 주로 과거 수요의 소득 및 가격 탄성 치를 바탕으로 미래의 수요를 예측하는데 비하여 공정분석모형은 기술발전에 따른 미래의 효율변화(향상)를 비교적 잘 반영할 수 있기 때문이다. 본 고는 덴마크공과대학교 Norgard 교수팀이 개발한 모형을 도입하여 분석모형(수식 (6))을 전력수요 = 기기 수 $\times$ 전력서비스$\times$ 전력집약도와 같이 설정하고 이를 사용하여 냉장고, 텔레비전, 조명 기기, 난방기기 등과 같은 전력사용 기기 별로 2001년과 2006년이 전력수요를 전망하였다. 본 고는 전력수요를 전력사용 기기의 사용용량(300리터 용량의 냉장고 등)과 사용시간을 나타내는 전력서비스와 전력 서비스당 필요 전력사용량을 나타내는 전력집약도로 나누어 구분하고 있는 모형을 이용함으로써 소득향상효과와 함께 기술발전에 따른 효율개선효과를 분석할 수 있다. 1) 생활수준 향상에 따라 전력서비스는 지금과 같이 증가한다, 2) 현실적으로 가능한 범위 내에서 전력사용 기기에 대한 최저 에너지 효율 제를 실시한다, 3) 현재 사용중인 기기 들은 원칙적으로 수명이 다한 후 고효율 기기 들로 자연 교체한다, 4) 최저 에너지 효율 제를 제외한 다른 제도 및 정책개선, 사용자의 에너지소비형태 개선에 따른 절전 잠재 량을 고려하지 않는다 등의 가정 하에 전력수요를 추정한 결과 1992년에 796 GWh(100)이었던 우리 나라 가정부문 전력수요는 2001년과 2006년에 29,237 GWh(134)와 33,118 GWh(152)로 각각 34%와 52%증가할 것으로 나타났다. 이 경우 1992년부터 2006년까지 가정용 전력수요 증가율은 연평균 3%로 추정된다. 기기의 서비스(가구수$\times$기기의 보급 율$\times$기기의 전력서비스)가 소득향상에 따라 증가하는데도 불구하고 전력수요의 증가율이 GDP(같은 기간 동안 연평균 증가율 5.7%)보다 매우 낮은 것은 기기의 대형화와 기기의 보급을 증가에 따른 전력의 추가수요가 기기의 에너지효율 개선으로 대부분 상쇄될 것이기 때문이다. 향후 10년 내에 기기에 따라 전력사용량을 25%~50%정도까지 줄일 수 있을 것으로 분석된다. 기술발전에 따른 기기의 에너지효율 개선효과는 본 고의 2006년도 가정용 전력수요의 전망치 33,118 GWh가 기존방식에 의한 한전의 전망치 61,155 GWh의 54%수준밖에 되지 않는데 서도 잘 나타나고 있다. 한편 본 고는 경제성장과 환경보존을 동시에 달성할 수 있는 지속적 개발의 실천방안으로서 에너지 수요관리를 논하고자 한다. 고효율 기기의 개발과 조기도입을 촉진시키는 에너지 수요관리 통하여 우리는 에너지효율을 대폭 개선시키며 대기오염 배출량도 대폭 줄일 수 있다. 본 고는 에너지 공급관리(공급확충)위주에서 에너지 수요관리위주로서의 에너지정책 전환은 불가피하다고 판단한다. 에너지 공급시스템보다 에너지 수요시스템위주로 전체 에너지시스템을 획기적으로 개선시키기 위해서는 최저 에너지효율제의 광범위한 실시와 함께 고효율 기기의 개발과 보급에 필요한 유인책의 도입, 고효율 기기와 에너지의 효율적 이용에 대한 정보 등이 필요시 되고 있다. 우리 나라의 경우 현재의 산업구조와 기술수준을 고려하여 에너지 효율의 기준을 미국보다 다소 낮게 설정한다면 최저 에너지효율제의 도입이 문제가 되지 않을 것으로 판단된다. 본 고는 고효율 기기의 개발과 조기도입을 지원하기 위한 가칭 대기환경보존 및 에너지 수요관리기금의 창설을 제안한다. 전력부문의 경우 기금은 1. 탄소세, 2. 전력소비에 대한 수요 관리 세의 도입 혹은 3. 한국전력공사 전력판매수입의 일정 분으로 조성될 수 있을 것으로 본다. 예를 들어 선진국들이 탄소세를 예정대로 도입한다는 전제하에 우리 나라가 2000년을 기준으로 탄소 톤당 8달러(석유 배럴 당 85센트)의 탄소세를 도입한다면 연간 7억 2,000만 달러(약5,760억 원)규모의 기금을 조성할 수 있다. 이 중 연간 2,000억 원 정도를 고효율 기기의 개발과 조기도입에 지원한다면 우리 나라 에너지 시스템 효율은 대폭 개선될 수 있을 것으로 예상된다.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.21
no.3
/
pp.183-191
/
2021
Non-intrusive load monitoring is a technology that can be used for predicting and classifying the type of appliances through real-time monitoring of user power consumption, and it has recently got interested as a means of energy-saving. In this paper, we propose a system for classifying appliances from user consumption data by combining GAF(Gramian angular field) technique that can be used for converting one-dimensional data to the two-dimensional matrix with convolutional neural networks. We use REDD(residential energy disaggregation dataset) that is the public appliances power data and confirm the classification accuracy of the GASF(Gramian angular summation field) and GADF(Gramian angular difference field). Simulation results show that both models showed 94% accuracy on appliances with binary-state(on/off) and that GASF showed 93.5% accuracy that is 3% higher than GADF on appliances with multi-state. In later studies, we plan to increase the dataset and optimize the model to improve accuracy and speed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.