• Title/Summary/Keyword: 전력사용량 예측

Search Result 73, Processing Time 0.035 seconds

Electric Power Consumption Forecasting Method using Data Clustering (데이터 군집화를 이용한 전력 사용량 예측 기법)

  • Park, Jinwoong;Moon, Jihoon;Kim, Yongsung;Hwang, Eenjun
    • Annual Conference of KIPS
    • /
    • 2016.04a
    • /
    • pp.571-574
    • /
    • 2016
  • 최근 에너지 효율을 최적화하는 차세대 지능형 전력망인 스마트 그리드 시스템(Smart Grid System)이 국내외에 널리 보급되고 있다. 그로 인해 그리드 시스템의 효율적인 운영을 위해 적용되는 EMS(Energy Management System) 기술의 중요성이 커지고 있다. EMS는 에너지 사용량 예측의 높은 정확성이 요구되며, 예측이 정확하게 수행될수록 에너지의 활용성이 높아진다. 본 논문은 전력 사용량 예측의 정확성 향상을 위한 새로운 기법을 제안한다. 구체적으로, 먼저 사용량에 영향을 미치는 환경적인 요인들을 분석한다. 분석된 요인들을 적용하여 유사한 환경을 가지는 전력 사용량 데이터의 사전 군집화를 수행한다. 그리고 예측 일에 관련된 환경 정보와 가장 유사한 군집의 전력 사용량 데이터를 기반으로 전력 사용량을 예측한다. 제안하는 기법의 성능을 평가하기 위해, 다양한 실험을 통하여 일간 전력 사용량을 예측하고 그 정확성을 측정하였다. 결과적으로, 기존의 기법들과 비교했을 때, 최대 52.88% 향상된 전력 사용량 예측 정확성을 보였다.

Power Consumption Forecasting Scheme for Educational Institutions Based on Analysis of Similar Time Series Data (유사 시계열 데이터 분석에 기반을 둔 교육기관의 전력 사용량 예측 기법)

  • Moon, Jihoon;Park, Jinwoong;Han, Sanghoon;Hwang, Eenjun
    • Journal of KIISE
    • /
    • v.44 no.9
    • /
    • pp.954-965
    • /
    • 2017
  • A stable power supply is very important for the maintenance and operation of the power infrastructure. Accurate power consumption prediction is therefore needed. In particular, a university campus is an institution with one of the highest power consumptions and tends to have a wide variation of electrical load depending on time and environment. For this reason, a model that can accurately predict power consumption is required for the effective operation of the power system. The disadvantage of the existing time series prediction technique is that the prediction performance is greatly degraded because the width of the prediction interval increases as the difference between the learning time and the prediction time increases. In this paper, we first classify power data with similar time series patterns considering the date, day of the week, holiday, and semester. Next, each ARIMA model is constructed based on the classified data set and a daily power consumption forecasting method of the university campus is proposed through the time series cross-validation of the predicted time. In order to evaluate the accuracy of the prediction, we confirmed the validity of the proposed method by applying performance indicators.

Power consumption predictions based Demand Response Algorithm Research for efficient energy management in office buildings (사무용 빌딩의 효율적 에너지 관리를 위한 전력 사용량 예측 기반 수요 반응 알고리즘 연구)

  • Yoon, Seok-Ho;Kim, Bong-Jun;Kim, Beom-Ju;Han, Jeong-Hun;Cho, Choong-Ho
    • Annual Conference of KIPS
    • /
    • 2015.10a
    • /
    • pp.1208-1210
    • /
    • 2015
  • 본 논문은 실제 사무용 빌딩의 전력 사용량 빅 데이터를 이용하여 효율적인 에너지 사용 및 빌딩 에너지 수요 반응 관리를 위해 전력 사용량 기준 클러스터링을 통한 분석결과를 제시하고 분석된 클러스터링 결과를 기반으로 전력 사용량 예측모델을 설계하였다. 예측모델을 통해 도출된 전력 사용량과 실제 빌딩의 실측 데이터 사이의 오차율을 계산하여 예측모델의 타당성을 보였으며 이를 토대로 에너지 예측 사용량 기반 효율적인 수요 반응 제어 알고리즘을 제시하였다.

Time series clustering for AMI data in household smart grid (스마트그리드 환경하의 가정용 AMI 자료를 위한 시계열 군집분석 연구)

  • Lee, Jin-Young;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.6
    • /
    • pp.791-804
    • /
    • 2020
  • Residential electricity consumption can be predicted more accurately by utilizing the realtime household electricity consumption reference that can be collected by the AMI as the ICT developed under the smart grid circumstance. This paper studied the model that predicts residential power load using the ARIMA, TBATS, NNAR model based on the data of hour unit amount of household electricity consumption, and unlike forecasting the consumption of the whole households at once, it computed the anticipated amount of the electricity consumption by aggregating the predictive value of each established model of cluster that was collected by the households which show the similiar load profile. Especially, as the typical time series data, the electricity consumption data chose the clustering analysis method that is appropriate to the time series data. Therefore, Dynamic Time Warping and Periodogram based method is used in this paper. By the result, forecasting the residential elecrtricity consumption by clustering the similiar household showed better performance than forecasting at once and in summertime, NNAR model performed best, and in wintertime, it was TBATS model. Lastly, clustering method showed most improvements in forecasting capability when the DTW method that was manifested the difference between the patterns of each cluster was used.

An Electric Load Forecasting Scheme for University Campus Buildings Using Artificial Neural Network and Support Vector Regression (인공 신경망과 지지 벡터 회귀분석을 이용한 대학 캠퍼스 건물의 전력 사용량 예측 기법)

  • Moon, Jihoon;Jun, Sanghoon;Park, Jinwoong;Choi, Young-Hwan;Hwang, Eenjun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.10
    • /
    • pp.293-302
    • /
    • 2016
  • Since the electricity is produced and consumed simultaneously, predicting the electric load and securing affordable electric power are necessary for reliable electric power supply. In particular, a university campus is one of the highest power consuming institutions and tends to have a wide variation of electric load depending on time and environment. For these reasons, an accurate electric load forecasting method that can predict power consumption in real-time is required for efficient power supply and management. Even though various influencing factors of power consumption have been discovered for the educational institutions by analyzing power consumption patterns and usage cases, further studies are required for the quantitative prediction of electric load. In this paper, we build an electric load forecasting model by implementing and evaluating various machine learning algorithms. To do that, we consider three building clusters in a campus and collect their power consumption every 15 minutes for more than one year. In the preprocessing, features are represented by considering periodic characteristic of the data and principal component analysis is performed for the features. In order to train the electric load forecasting model, we employ both artificial neural network and support vector machine. We evaluate the prediction performance of each forecasting model by 5-fold cross-validation and compare the prediction result to real electric load.

Short Term Building Power Load Forecasting Using Intellignet Algorithms (지능형 알고리즘을 이용한 빌딩 전력부하 예측)

  • Kim, Jeong-Hyuk;Boo, Chang-Jin;Kim, Ho-Chan;Kim, Jeong-Uk
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.400-401
    • /
    • 2011
  • 본 논문은 오피스 빌딩에서 최대 피크를 나타내는 여름철과 겨울철에 대한 부하사용량에 대해 신경회로망 알고리즘을 적용하여 일주일 단위를 예측하기 위한 단기예측 모델을 제시하였다. 2010년 7월~8월 사이의 최대전력사용량과 2010년 12월~2011년 1월 사이의 최대전력 사용량을 나타내는 시기에 온도, 습도, 풍속과의 연관성을 파악하기 위해 기후변화요소의 변수를 고려했을 때와 고려하지 않았을 때의 출력모델 비교를 통해 실제 전력사용 모델과 근접한 모델을 확인하였고 향후 최대부하 사용과 연관된 사용량 제어를 위한 알고리즘을 적용하여 전력사용량을 절약할 수 있는 방법을 시도하고자 한다.

  • PDF

Implementation of Smart Meter Applying Power Consumption Prediction Based on GRU Model (GRU기반 전력사용량 예측을 적용한 스마트 미터기 구현)

  • Lee, Jiyoung;Sun, Young-Ghyu;Lee, Seon-Min;Kim, Soo-Hyun;Kim, Youngkyu;Lee, Wonseoup;Sim, Issac;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.93-99
    • /
    • 2019
  • In this paper, we propose a smart meter that uses GRU model, which is one of artificial neural networks, for the efficient energy management. We collected power consumption data that train GRU model through the proposed smart meter. The implemented smart meter has automatic power measurement and real-time observation function and load control function through power consumption prediction. We determined a reference value to control the load by using Root Mean Squared Error (RMS), which is one of performance evaluation indexes, with 20% margin. We confirmed that the smart meter with automatic load control increases the efficiency of energy management.

Time series analysis of the electricity demand in a residential building in South Korea (주거용 건물의 전력 사용량에 대한 시계열 분석 및 예측)

  • Park, Kyeongmi;Kim, Jaehee
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.3
    • /
    • pp.405-421
    • /
    • 2019
  • Predicting how much energy to use is an important issue in society. However, it is more difficult to capture the usage characteristics of residential buildings than other buildings. This paper provides time series analysis methods for electricity consumption in a residential building. Temperature is closely related to electricity demand. An error correction model, which is a method of adjusting the error with time, is applied when a cointegration relation is established between variables. Therefore, we analyze data via ECMs with consideration of the temperature effect.

Forecast Methodology study of power consumption using the RLS algorithm for efficient energy management in office buildings (사무용 건물의 효율적인 에너지 관리를 위한 RLS알고리즘을 활용한 전력 사용량 예측방법론 연구)

  • Yoon, Seok-Ho;Song, Ji-eun;Kim, Bong-Jun;Cho, Choong-Ho
    • Annual Conference of KIPS
    • /
    • 2016.10a
    • /
    • pp.537-538
    • /
    • 2016
  • 본 논문은 사무용 건물의 효율적인 에너지 관리를 위하여 실제 사무용 건물의 전력 사용량 빅 데이터를 이용하여 RLS 알고리즘을 활용한 사용량 예측 모델을 설계하였다. 예측모델을 통해 도출된 예측치와 실측 데이터 사이의 오차율을 계산하고, MA알고리즘을 사용한 예측값과의 비교를 통해 제안하는 변형된 RLS 알고리즘을 이용한 에너지 사용량 예측 방법론의 타당성과 우수성을 검증하였다.

Implementation of Smart Metering System Based on Deep Learning (딥 러닝 기반 스마트 미터기 구현)

  • Sun, Young Ghyu;Kim, Soo Hyun;Lee, Dong Gu;Park, Sang Hoo;Sim, Issac;Hwang, Yu Min;Kim, Jin Young
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.829-835
    • /
    • 2018
  • Recently, studies have been actively conducted to reduce spare power that is unnecessarily generated or wasted in existing power systems and to improve energy use efficiency. In this study, smart meter, which is one of the element technologies of smart grid, is implemented to improve the efficiency of energy use by controlling power of electric devices, and predicting trends of energy usage based on deep learning. We propose and develop an algorithm that controls the power of the electric devices by comparing the predicted power consumption with the real-time power consumption. To verify the performance of the proposed smart meter based on the deep running, we constructed the actual power consumption environment and obtained the power usage data in real time, and predicted the power consumption based on the deep learning model. We confirmed that the unnecessary power consumption can be reduced and the energy use efficiency increases through the proposed deep learning-based smart meter.