• Title/Summary/Keyword: 전력계통 연계

Search Result 1,209, Processing Time 0.033 seconds

The Study for EV Charging Infrastructure connected with Microgrid (마이크로그리드와 연계된 전기자동차 충전인프라에 관한 연구)

  • Hun Shim
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • In order to increase the use of electric vehicles (EVs) and minimize grid strain, microgrid using renewable energy must take an important role. Microgrid may use fossil fuels such as small diesel power, but in many cases, they can be supplied with energy from renewable energy, which is an eco-friendly energy source. However, renewable energy such as solar and wind power have variable output characteristics. Therefore, in order to meet the charging and discharging energy demands of electric vehicles and at the same time supply load power stably, it is necessary to review the configuration of electric vehicle charging infrastructure that utilizes diesel power or electric vehicle-to-grid (V2G) as a parallel energy source in the microgrid. Against this background, this study modelized a microgrid that can stably supply power to loads using solar power, wind power, diesel power, and V2G. The proposed microgrid uses solar power and wind power generation as the primary supply energy source to respond to power demand, and determines the operation type of the load's electric vehicles and the rotation speed of the load synchronous machine to provide stable power from diesel power for insufficient generations. In order to verify the system performance of the proposed model, we studied the stable operation plan of the microgrid by simulating it with MATLAB /Simulink.

Active Front End Rectifier Control of DC Distribution System Using Neural Network (신경회로망을 적용한 직류배전시스템의 AFE 정류기 제어에 관한 연구)

  • Kim, Seongwan;Jeon, Hyeonmin;Kim, Jongsu
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1124-1128
    • /
    • 2021
  • As regulations of emissions from ships become more stringent, electric propulsion systems have been increasingly used to solve this problem in vessels ranging from large merchant ships to small and medium-sized ships. Methods for improving the efficiency of the electric propulsion system include the improvement of power sources; the use of a system linked to environmentally friendly power sources, such as batteries, fuel cells, and solar power; and the development of hardware and control methodology for rectifiers, power conversion devices, and propulsion motors. The method using a phase-shifting transformer with diodes has been widely used for rectification. Power semiconductor devices with grid connection to an environmentally friendly power source using DC distribution, a variable speed power source, and the application of small and medium-sized electric propulsion systems have been developed. Accordingly, the demand for active front-end (AFE) rectifiers is increasing. In this study, a method using a neural network rather than a conventional proportional-integral controller was proposed to control the AFE rectifier. Tested controller data were used to design a neural network controller trained through MATLAB/Simulink. The neural network controller was applied to a rectification system designed using PSIM software. The results indicated the effectiveness of improving the waveform and power factor DC output stage according to the load variation. The proposed system can be applied as a rectification system for small and medium-sized environmentally friendly ships.

Scenario Analysis, Technology Assessment, and Policy Review for Achieving Carbon Neutrality in the Energy Sector (에너지 부문의 탄소중립 달성을 위한 국내외 시나리오 분석 및 기술, 정책현황 고찰)

  • Han Saem Park;Jae Won An;Ha Eun Lee;Hyun Jun Park;Seung Seok Oh;Jester Lih Jie Ling;See Hoon Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.496-504
    • /
    • 2023
  • Countries worldwide are striving to find new sources of sustainable energy without carbon emission due to the increasing impact of global warming. With the advancement of the fourth industrial revolution on a global scale, there has been a substantial rise in energy demand. Simultaneously, there is a growing emphasis on utilizing energy sources with minimal or zero carbon content to ensure a stable power supply while reducing greenhouse gas emissions. In this comprehensive overview, a comparative analysis of carbon reduction policies of government was conducted. Based on international carbon neutrality scenarios and the presence of remaining thermal power generation, it can be categorized into two types: "Rapid" and "Safety". For the domestic scenario, the projected power demand and current greenhouse gas emissions in alignment with "The 10th Basic Plan for Electricity Supply and Demand" was examined. Considering all these factors, an overview of the current status of carbon neutrality technologies by focusing on the energy sector, encompassing transitions, hydrogen, transportation and carbon capture, utilization, and storage (CCUS) was offered followed by summarization of key technological trends and government-driven policies. Furthermore, the central aspects of the domestic carbon reduction strategy were proposed by taking account of current mega trends in the energy sector which are highlighted in international scenario analyses.

A Study on Energy Savings of a DC-based Variable Speed Power Generation System (직류기반 가변속 발전 시스템을 이용한 에너지 절감에 관한 연구)

  • Kido Park;Gilltae Roh;Kyunghwa Kim;Changjae Moon;Jongsu Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.666-671
    • /
    • 2023
  • As international environmental regulations on ship emissions are gradually strengthened, interest in electric propulsion and hybrid propulsion ships is increasing, and various solutions are being developed and applied to these ships, especially stabilization of the power system and system efficiency. The direct current distribution system is being applied as a way to increase the power. In addition, verification and testing of safety and performance of marine DC distribution systems is required. As a result of establishing a DC distribution test bed, verifying the performance of the DC distribution (variable speed power generation) system, and analyzing fuel consumption, this study applied a variable speed power generation system that is applied to DC power distribution for ships, and converted the power output from the generator into a rectifier. A system was developed to convert direct current power to connect to the system and monitor and control these devices. Through tests using this DC distribution system, the maximum voltage was 751.5V and the minimum voltage was 731.4V, and the voltage fluctuation rate was 2.7%, confirming that the voltage is stably supplied within 3%, and a variable speed power generation system was installed according to load fluctuations. When applied, it was confirmed through testing that fuel consumption could be reduced by more than 20% depending on the section compared to the existing constant speed power generation system.

Development of Current Limiting COS Fuse Link with Improved Overcurrent and Protection Coordination performance (과전류 차단과 보호협조 성능이 향상된 한류형 COS 퓨즈링크 개발)

  • Kim, Youn-Hyun;Kim, Young-Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.129-136
    • /
    • 2020
  • A Cut Out Switch (COS) is used for line protection and pole transformer protection in power systems. The COS used to protect the pole transformer is installed on the power side of the pole transformer to protect the electric equipment from fault currents. The COS is composed largely of a body and a fuse holder, and when the fault current is energized, the element of the fuse link in the fuse holder is melted to block the fault current. The arc generated when the COS fuse link is blown causes fire and noise, causing discomfort to residents in the surrounding area, and the arc flame can cause secondary damage to the peripheral device. In this study, a current-limiting COS fuse with improved overcurrent blocking performance rather than explosion type was developed to solve the arc and noise problems during COS operation. The overcurrent breaking performance of the current-limiting COS improves the reliability by developing a striker and COS fuse bracket. In addition, this study aimed to verify the performance of the developed current-limiting COS fuse through a test at an authorized institution.

Detailed Design of Power Conversion Device Hardware for Realization of Fuel Cell Power Generation System (연료전지 발전시스템 구현을 위한 전력변환장치 하드웨어 세부설계)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.135-140
    • /
    • 2022
  • In addition to the stack that directly generates electricity by the reaction of hydrogen and oxygen, the fuel cell power generation system has a reformer that generates hydrogen from various fuels such as methanol and natural gas. It also consists of a power converter that converts the DC voltage generated in the stack into a stable AC voltage. The fuel cell output of such a system is direct current, and in order to be used at home, an inverter device that converts it into alternating current through a power converter is required. In addition, a DC-DC step-up converter is used to boost the fuel cell voltage to about 30~70V, which is the inverter operating voltage, to about 380V. The DC-DC step-up converter is a DC voltage variable device that exists between the fuel cell output and the inverter. Accordingly, since a constant output voltage of the converter is generated in response to a change in the output voltage of the fuel cell, the inverter can receive constant power regardless of the voltage change of the fuel cell. Therefore, in this paper, we discuss the detailed hardware design of the full-bridge converter, which is the main power source of the inverter that receives the fuel cell output voltage (30~70V) as an input and is applied to the grid among the members of the fuel cell power generation system.

Technology of single-axis solar tracking system and power generation increase (단축식 태양광 추적장치의 설계와 발전량 증대기술)

  • LEE, Jae-Jin;Lee, Kyo-Beum;Jeong, Kyu-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.212-217
    • /
    • 2020
  • The PV power generation system is a comprehensive system that transmits the power generated through a PV panel to a grid connection and is composed of a solar panel, a structure, and an inverter grid connection system. One technology to increase the amount of power generated involves changing the incident angle of sunlight. This study examined the structure and control of a single-axis tracking PV system that increases the amount of power generated by changing the incident angle. The core content is a single-axis control system and technology configured to rotate the solar structure in the east-west direction around the north-south axis. A solar structure that follows the sun from sunrise to sunset in the east-west direction needs to secure structural stability and solar tracking control performance. A single-axis tracking system can generate up to 25% more power.

Safety Performance Evaluation of Technical Independence 5kW Class Fuel Cell System (기술자립형 5kW급 건물용 연료전지시스템 안전성능 평가)

  • Lee, Jungwoon;Kim, Younggyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.82.1-82.1
    • /
    • 2011
  • 최근 국내에서 발생된 대규모 정전사태로 인해 안정적인 전력공급에 대한 국민들의 요구가 커져, 지난 3월 일본 후쿠시마 원전사고 이후 다시 한번 분산전원에 대한 필요성이 대두되어지고 있다. 여러 분산전원 중 연료전지는 다른 에너지원에 비해 에너지의 지속성이 우수하여 가장 안정적인 분산전원 형태의 하나이다. 이에 따라 국내의 경우 우수한 도시가스 인프라로 인해 건물용 연료전지라는 신기술에 대한 국민의 수용성은 점점 높아질 것으로 기대된다. 현재 건물용 연료전지의 경우, 주로 1kW급 연료전지가 시범보급되어 각 가정에 설치되어지고 있으나, 상가, 주유소 및 편의점 등의 상업시설과 생활관 및 소형빌라 등의 집단 주거시설 같은 1kW급 보다 용량을 더 필요로 하는 응용처에 국내에서 개발된 5kW급 연료전지시스템이 적용되어지기를 기대한다. 본 연구에서는 국내 제작된 5kW급 고분자전해질 연료전지시스템의 보급이전에 안전성능 평가를 통해 시스템의 성능 및 안전성 평가결과를 제조사에 피드백 하여 5kW급 건물용 연료전지시스템의 조기 상업화에 앞장서고자 한다. 5kW급 연료전지시스템의 기술개발은 핵심부품인 연료변환기, 스택 및 BOP 기술의 경우 1kW급 연료전지시스템에 적용된 것과는 다른 기술이 필요하고, 단순한 scale-up 과정이 아닌 새로운 기술개발로 제품에 적용시켜야 하는 난점을 가지고 있다. 특히, 연료변환기의 경우 연료 유량의 증가로 인하여 reformer, CO shift 및 Prox 반응기의 유체역학, 열교환 흐름 및 촉매반응 공학적으로 이론을 응용한 새로운 반응기 설계와 제작기술 확립이 선행되어 전체적인 시스템 제작 설계에 반영되어져야 한다. 그러므로 본 연구에서는 연료전지시스템 안전성능 평가를 위해 용량증대에 따른 안전성평가 항목을 검토하고, 5kW급 연료전지시스템평가를 수행하여 시스템의 제품성능, 작동성능 및 계통연계성능에서의 안전성을 확인하였고, 정전 유풍과 같은 이상조건 및 실외 환경에 대한 시스템의 안전성도 확인하였다. 또한 부하운전 조건을 75% 및 50%로 변화시켰을 때 빠른 응답시간과 안정적인 부하변동운전을 확인하였다.

  • PDF

Improved RPV(reactive-power-variation) anti-islanding method for grid-connected three-phase PVPCS (3상 계통연계형 태양광 PCS의 단독운전검출을 위한 개선된 무효전력변동기법)

  • Lee, K.O.;Jung, Y.S.;So, J.H.;Yu, B.G.;Yu, G.J.;Choi, J.Y.;Choy, I.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1159-1160
    • /
    • 2006
  • As the grid-connected photovoltaic power conditioning systems (PVPCS) are installed in many residential areas, this has raised potential problems of network protection on electrical power system. One of the numerous problems is an Island phenomenon. There has been an argument that because the probability of islanding is extremely low it may be a non-issue in practice. However, there are three counter-arguments: First, the low probability of islanding is based on the assumption of 100% power matching between the PVPCS and the islanded local loads. In fact, an island can be easily formed even without 100% power matching (the power mismatch could be up to 30% if only traditional protections are used, e.g. under/over voltage/frequency). The 30% power-mismatch condition will drastically increase the islanding probability. Second, even with a larger power mismatch, the time for voltage or frequency to deviate sufficient to cause a trip, plus the time required to execute the trip (particularly if conventional switchgear is required to operate), can easily be greater than the typical re-close time on the distribution circuit. And, third, the low-probability argument is based on the study of PVPCS. Especially, if the output power of PVPCS equals to power consumption of local loads, it is very difficult for the PVPCS to sustain the voltage and frequency in an island. Unintentional islanding of PVPCS may result in power-quality issues, interference to grid-protection devices, equipment damage, and even personnel safety hazards. So the verification of anti-islanding performance is strongly needed. In this paper, the authors propose the improved RPV method through considering power quality and anti-islanding capacity of grid-connected three-phase PVPCS in IEEE Std 1547 ("Standard for Interconnecting Distributed Resources to Electric Power Systems"). And the simulation and experimental results are verified.

  • PDF

Design of Simulated Photovoltaic Power Streetlight for Education using Renewable Energy Utilization and Storage Function (신재생에너지 활용 및 저장기능을 이용한 교육용 모의 태양광발전 가로등 설계)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.137-142
    • /
    • 2021
  • A Photovoltaic power streetlight is a system that uses solar energy to charge a secondary battery and then uses it for night lighting through a lamp, and can be configured as a standalone or grid-connected type by installing an LED streetlight at the load end. The energy generated through the solar cell module can be charged to the secondary battery through the charge/discharge control device, and then the LED street light can be turned on and off by comparing the power generation voltage and the charging voltage according to the monitoring of solar radiation, or by setting a specific time after sunset or sunrise. Based on these contents, this paper designed and manufactured a simulated solar power streetlight for education using new and renewable energy utilization and storage functions. Using these educational equipment, students can 1) understand the flow of energy change using renewable energy including sunlight as electric energy, 2) understand new and renewable energy, and cultivate basic design and manufacturing application power of related products, 3) The use of new and renewable energy through power conversion and strengthening of practical training and analysis through hardware production can be instilled.