Proceedings of the Korean Information Science Society Conference
/
2001.10a
/
pp.385-387
/
2001
대부분의 B2C 쇼핑몰 시스템은 사용사 인터페이스에서만 큰 차이를 보일 뿐 기능적/비기능적 요구사항과 아키텍처는 유사하며 쇼핑몰 시스템 구성요소들의 재사용은 매우 높다. 이에 B2C 쇼핑몰 시스템의 제품 라인 구축 시 입력몰인 1) 제푸 제약사항, 2)스타일, 패턴 및 프레임워크, 3)생산 제약사항, 4)생산 전략, 5)기존 구성품의 재고조사를 정의하고 B2C 쇼핑몰의 모델 분류와 기본적인 사용자 요구사항을 바탕으로 쇼핑몰 시스템의 공통점과 차이점을 제품 라인 범위로 제시한다. 일반적인 B2C 쇼핑몰 시스템이 제공하여야 하는 고객 정보 관리, 상품 정보 관리, 주문관리, 보안, 상품 운송 등의 기본 기능이 공통점으로 추출되었으며 가격의 고정 여부, 사용자 인터페이스, 멀티미디어 서비스 지원 여부, 포탈 사이트와 비슷한 검색 기능, 온라인 지불 기능의 지원과 사용자 인터페이스 및 데이터 베이스 스키마 등이 차이점으로 추출되었다.
최근 청년실업으로 인해 각 대학들은 학교별 특성에 맞는 취업프로그램을 실시하고 있다. 현재 순천향대 취업 담당자들은 취업프로그램을 진행하며 면담 및 학생정보를 수기로 작성 하고 있어 불편한 점이 많다. 본 논문에서는 기존의 CRM 고객관리시스템을 응용하여 고객이 아닌 학생의 상담내역을 기반으로 취업의 방향과 전략을 세우는 학생 취업 관리 시스템을 구현하였다. 본 논문에서 구현한 시스템은 Spring 프레임워크, MVC 패턴을 활용하여 역할의 분명한 분리를 수행하고, 이를 통해 보다 효율적인 웹을 구현할 수 있도록 하였다.
현재 개인정보보호법 및 정보보안에 대한 중요한 이슈가 되고 있다. 데이터 유출사고의 약 76%가 외부조직에서 발견되었고, 피해조직의 내부에서 발견된 비율 중 절반 이상이 최종 사용자에 의해 발견되었다. 관제대상과 범위가 주로 네트워크 영역으로 한정되어 있고 외부로부터 유입되는 공격에 대한 모니터링에 집중하는 보안관제 체계가 사고의 원인으로 파악되었다. 즉 내부 PC를 대상으로 하는 공격이나, 패턴기반의 탐지를 우회하는 알려지지 않은 취약점을 이용한 APT공격, 사회공학적 공격 등에는 한계를 보이는 경우이다. 향후 사물인터넷(IoT)의 증가로 인하여 더 많은 취약점 공격과 대량의 비정형 데이터가 증가할 경우 내외부적인 공격에 보안 체계가 더 체계적이고 계층적 방어 보안 모델로 대응해야 한다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2006.11a
/
pp.61-64
/
2006
SVDD(support vector data description)는 one-class 서포트 벡터 학습 방법론 중 하나로 비정상 물체에서 정상 데이터를 구분하기 위해서 특징 공간(feature space)에서 정의된 구를 이용하는 전략을 쓰는 방법론이다. 하지만 SVDD는 모든 데이터에 대해서 같은 중요도를 부가하는 단점을 가지고 있다. 최근에, 이런 문제점을 보완하기 위해 데이터의 밀도 분포에 따라서 중요도를 다르게 부가하는 D-SVDD(density-induced support vector data description) 방법론이 발표되었고, 아직도 많은 연구가 진행되고 있다. 본 논문에서는 D-SVDD를 이용해서 노이즈가 섞인 비정상 데이터를 노이즈가 제거된 정상 데이터로 복원하는 방법에 대해서 논한다. 특히, 본 논문에서 제안하는 방법론을 다른 방법론과 비교하여 본 논문의 방법론의 효용성에 대해서 다룬다.
Recently studies have shown that conditional branches can be accurately predicted by recording the path leading up to the branch. But path predictors are more complex and uncompatible with existing pattern branch predictors. In order to solve these problems, we propose a simple path branch predictor(SPBP) that hashes together two most recent branch instruction addresses. In addition, we propose a pattern/path hybrid branch predictor composed of the SPBP and existing pattern branch predictors. Through the trace-driven simulation of six benchmark programs, the performance improvement by the proposed pattern/path hybrid branch prediction is analysed and validated. The proposed predictor can improve the prediction accuracy from 94.21% to 95.03%.
Journal of the Korea Society of Computer and Information
/
v.6
no.3
/
pp.29-34
/
2001
Competition is increasing in telecommunication service market. Effective customer retention strategies are based on a clear understanding of customer defection. Data mining offers service providers great opportunities to get closer to customer. In this paper, we propose an efficient data mining algorithm using neural network. Especially Analysis of CRM Using Neural Networks in Telecommunication service Market and a practical application of neural network is described telco, churn management This paper builds model of customer defection management and analyzes customer defection with data mining
Kim, Young-Chul;Lee, Seog-Won;Oh, Sang-Heon;Hwang, Dea-Yong
Annual Conference of KIPS
/
2012.11a
/
pp.1125-1128
/
2012
최근 FTA 체결은 국내의 농식품 소비자들을 값싼 외국산 농식품으로 소비 패턴을 변화시킬 수 있다. 또한 유통시장의 변화 즉, 소비자-생산자 간의 직거래 형태는 개인이 프로슈머로서 농식품 관련 컨텐츠의 제작과 생산이 더욱 활발해지도록 하며 소비자들이 구매의사 결정에 중요하게 작용하고 있다. 따라서 농식품의 효과적인 마케팅 전략읠 수립 및 실행을 위하여 소비자가 무엇을 원하고 인식하지 못한 욕구가 있는지 소비자 유형을 분석 할 필요가 있다. 본 논문에서는 농식품 소비자 구매의도를 통한 제품이나 서비스의 이용의도로서 종속변수로 설정하여 구매의도에 영향을 미치는 요인을 분석하였다. 또한 연구 모형을 위해 교류빈도, 친밀감, 호혜성, 감정의 강도라는 SNS 특성을 도출하여 분석하였다.
Journal of Information Technology Applications and Management
/
v.26
no.1
/
pp.65-75
/
2019
As the use of semantic web based on XML increases in the field of data management, a lot of studies to extract useful information from the data stored in ontology have been tried based on association rule mining. Ontology data is advantageous in that data can be freely expressed because it has a flexible and scalable structure unlike a conventional database having a predefined structure. On the contrary, it is difficult to find frequent patterns in a uniformized analysis method. The goal of this study is to provide a basis for extracting useful knowledge from ontology by searching for frequently occurring subgraph patterns by applying transaction-based graph mining techniques to ontology schema graph data and instance graph data constituting ontology. In order to overcome the structural limitations of the existing ontology mining, the frequent pattern search methodology in this study uses the methodology used in graph mining to apply the frequent pattern in the graph data structure to the ontology by applying iterative node chunking method. Our suggested methodology will play an important role in knowledge extraction.
사이버물리시스템(CPS)은 실시간 제약으로 타이밍에 민감한 특징이 있으며, 산업 영역에 적용시 시스템 동작과 안전필수 로그의 특정한 패턴을 나타내는 대용량의 실시간 데이터를 생성시킨다. 본 논문은 공개소스프로젝트인 하둡에코시스템을 이용한 CPS 데이터분석 아키텍처를 소개한다. CPS 처리의 특징 때문에 그 대용량의 데이터 처리는 하나의 머신에서 분석될 수 없으므로, 하둡에코시스템을 통하여 실시간 기반으로 생성되는 데이터를 저장하고 처리하는 시스템 아키텍처를 제안한다. 하둡분산파일시스템(HDFS)은 거대한 CPS 데이터의 저장을 위한 기본 파일시스템이고, 하이브는 데이터웨어하우징 처리를 위한 CPS 데이터분석에 사용된다. 플룸은 서버들로부터 데이터를 수집하고 HDFS에서 그 데이터를 처리하기 위해 사용되며, Rhive는 데이터 마이닝과 분석을 적용하기 위해 사용된다. 이러한 아키텍처를 개관하고, 또한 효과적인 데이터 분석을 위해 사용한 시스템 설계 전략을 소개한다.
높은 사양이 필요한 하드웨어 기반의 모바일 및 IoT 임베디드 시스템은 저전력과 성능에 중요한 이슈를 갖고 있다. 이는 전력 소비로 발열량 증가 및 기기의 수명 단축 문제가 발생된다. 이러한 환경에서 소프트웨어도 제한된 전력, 메모리 등에서 안정적인 동작을 수행해야 하므로 디바이스의 소비전략이 증가한다. 이를 해결하고자, 코드 관점에서 전력 소모 최소화를 통한 소프트웨어 성능 개선 가시화 방법을 제안한다. 이는 코드 가시화를 통해 복잡한 모듈을 식별하고, 저전력 코드 패턴을 적용하여 소프트웨어 성능을 개선한다. 이런 코드로 소비전력을 감소 및 성능을 개선함으로써 코드의 품질을 최적화 할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.