• Title/Summary/Keyword: 전단 미끄러짐 분석

Search Result 14, Processing Time 0.023 seconds

Scenario Analysis of Injection Temperature and Injection Rate for Assessing the Geomechanical Stability of CCS (Carbon Capture and Sequestration) System (이산화탄소 격리저장시스템의 역학적 안정성 평가를 위한 주입온도 및 주입량 시나리오 해석)

  • Kim, A-Ram;Kim, Hyung-Mok
    • Tunnel and Underground Space
    • /
    • v.26 no.1
    • /
    • pp.12-23
    • /
    • 2016
  • For a successful accomplishment of Carbon Capture Sequestration (CCS) projects, appropriate injection conditions should be designed and optimized for site specific geological conditions. In this study, we evaluated the effect of injection conditions such as injection temperature and injection rate on the geomechanical stability of CCS system in terms of TOUGH-FLAC simulator, which is one of the well-known T-H-M coupled analysis methods. The stability of the storage system was assessed by a shear slip potential of the pre-existing fractures both in a reservoir and caprock, expressed by mobilized friction angle and Mohr stress circle. We demonstrated that no tensile fracturing was induced even in the cold CO2 injection, where the injected CO2 temperature is much lower than that of the reservoir and tensile thermal stress is generated, but shear slip of the fractures in the reservoir may occur. We also conducted a scenario analysis by varying injected CO2 volume per unit time, and found out that it was when the injection rate was decreasing in a step-wise that showed the least potential of a shear slip.

Behaviour of a Single Pile in Heaving Ground Due to Ground Excavation (지하터파기로 인해 융기(Heaving)가 발생한 지반에 근입된 단독말뚝의 거동)

  • Lee, Cheolju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.1
    • /
    • pp.27-34
    • /
    • 2010
  • A finite element analysis has been conducted to clarify the behaviour of a single pile in heaving ground related to ground excavation. The numerical analysis has included soil slip at the pile-soil interface, analysing the interaction between the pile and the clay has been studied. The study includes the upward movement of the pile, the relative shear displacement between the pile and the soil and the shear stresses at the interface and the axial force on the pile. In particular, the shear stress transfer mechanism at the pile-soil interface related to a decrease in the vertical soil stress has been rigorously analysed. Due to the reductions in the vertical soil stress after excavation, the relative shear displacement and the shear stress along the pile have been changed. Upward shear stress developed at most part of the pile (Z/L=0.0-0.8), while downward shear stress is mobilized near the pile tip (Z/L=0.8-1.0) resulting in tensile force on the pile, where Z is the pile location and L is the pile length. Some insights into the pile behaviour in heaving ground analysed from the numerical analyses has been reported.

Geomechanical Stability Analysis of Potential Site for Domestic Pilot CCS Project (국내 이산화탄소 지중격리저장 실증실험 후보부지의 역학적 안정성 평가 기초해석)

  • Kim, A-Ram;Kim, Hyung-Mok;Kim, Hyun-Woo;Shinn, Young-Jae
    • Tunnel and Underground Space
    • /
    • v.27 no.2
    • /
    • pp.89-99
    • /
    • 2017
  • For a successful performance of Carbon Capture Sequestration (CCS) projects, appropriate injection conditions should be designed to be optimized for site specific geological conditions. In this study, we built a simple 2-dimensional analysis model, based on the geology of Jang-gi basin which is one of the potential sites of domestic CCS projects. We evaluated the impact of initial stress conditions and injection rate through coupled TOUGH-FLAC simulator. From the preliminary analysis, we constructed risk scenarios with the higher potential of shear slip and performed scenario analysis. Our analysis showed that normal stress regime produced the highest potential of shear slip and stepwise increasing injection rate scenario resulted in much larger pore pressure build up and consequent higher potential of the shear slip, which was evaluated using a mobilized friction coefficient.

Slip Behavior of High-Tension Bolted Joints Subjected to Compression Force (압축력을 받는 고장력 볼트 이음부의 미끄러짐 거동)

  • Han, Jin Hee;Choi, Jong Kyoung;Heo, In Sung;Kim, Sung Bo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.279-288
    • /
    • 2008
  • In this study, the slip behavior of high-tension bolted joints subjected to compression force is investigated through 3D finite element analysis and experiments. The relation with sliding load, bolt deformation, and failure load are studied with the metal thickness affecting the bolted joint. The post-sliding behavior considering bolt stiffness is presented and compared with the results by finite element and experiments. The finite element model is constructed by solid elements in ABAQUS, in consideration of all the friction effects between metal plates and bolts. The stress-strain relations in the literature are used, and the sliding displacements and axial stresses around the bolt connection are investigated. The flexural buckling of species happened when the plate thickness is less than the bolt diameter. However, the shear failures of bolt occurred in the opposite case.

Behaviour of single piles and pile groups in service to adjacent tunnelling conducted in the lateral direction of the piles (사용 중인 단독 및 군말뚝의 측면에서 실시된 터널굴착으로 인한 말뚝의 거동)

  • Lee, Cheol-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.4
    • /
    • pp.337-356
    • /
    • 2012
  • Three-dimensional (3D) numerical analyses have been performed to study the behaviour of single piles and grouped piles to adjacent tunnelling in the lateral direction of the pile. In the numerical analyses, the interaction between the tunnel, the pile and the soil next to the piles and shear transfer mechanism have been analysed allowing soil slip at the pile-soil interface by using interface elements. The study includes the shear stresses at the soil next to the pile, the axial force distributions on the pile and the pile settlement. It has been found that existing elastic solutions may not accurately estimate the pile behaviour since several key issues are excluded. Due to changes in the shear transfer between the pile and the soil next to the pile with tunnel advancement, the shear stresses and axial force distributions along the pile change drastically. Downward shear stress develops above the tunnel springline while upward shear stress is mobilised below the tunnel springline, resulting in a compressive force on the pile. In addition, mobilisation of shear strength at the pile-soil interface was found to be a key factor governing pile-soil-tunnelling interaction. It has been found that grouped piles are less influenced by the tunnelling than the single pile in terms of the axial pile forces. The reduction of apparent allowable pile capacity due to pile settlement resulted from the tunnelling seemed to be insignificant.

Shear Behavior of Large Prestressed Concrete Beams Cast with High Strength Concrete and the Effect of Draped Tendon on their Shear Behavior (고강도 대형 프리스트레스트 콘크리트 보의 전단거동과 경사진 프리스트레싱 긴장재의 영향)

  • Kim Kang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.963-974
    • /
    • 2005
  • This paper presented four shear test results from experimental tests of two large prestressed concrete beams cast with high strength concrete. In particular, this experiment investigated the effects of draped strands on shear behavior of these full-scaled beams. This study indicated that the use of draped strands increased the ultimate shear capacity as well as the web-shear cracking load. The test results also showed that draped strands reduced strand slip at ends of beams, which represented that these strands were effective to relieve the anchorage stresses. The test results were compared to predictions by two major codes; ACI 318-02 Building Code and AASHTO LRFD(2002). The shear design provisions in these codes provided conservative results on the shear strengths of all test specimens with reasonable margins of safety, and these provisions were particularly more conservative for test specimens having draped strands.

A Study on the Behaviour of a Single Pile to Tunnelling Including Soil Slip (Soil slip을 고려한 터널굴착에 의한 단독말뚝의 거동연구)

  • Lee, Cheol-Ju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.5
    • /
    • pp.59-67
    • /
    • 2009
  • Three-dimensional (3D) numerical analyses have been conducted to study the behaviour of a single pile to tunnelling. The numerical analysis has included soil slip at the pile-soil interface. In the numerical analyses the interaction between the tunnel and the pile constructed in weathered soil and rock has been analysed. The study includes the pile settlement, the relative shear displacement between the pile and the soil and the shear stresses at the interface and the axial force on the pile. In particular, the shear stress transfer mechanism at the pile-soil interface related to the tunnel advancement has been rigorously analysed. Due to changes in the relative shear displacement at the pile-soil interface during the tunnel advancement, the shear stress and the axial force distributions along the pile have been changed. Upward shear stress developed at most part of the pile (Z/L=0.0-0.8), while downward shear stress is mobilised near the pile tip (Z/L=0.8-1.0) resulting in tensile force on the pile, where Z is the pile location and L is the pile length. Some insights into the pile behaviour to tunnelling obtained from the numerical analyses will be reported and discussed.

  • PDF

The Mechanism of Load Resistance and Deformability of Reinforced Concrete Coupling Beams (철근 콘크리트 연결보의 하중 전달 기구와 변형 능력)

  • Hong, Sung-Gul;Jang, Sang-Ki
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.113-123
    • /
    • 2006
  • An experimental investigation on the behavior of reinforced concrete coupling beams is presented. The test variables are the span-to-depth ratio, the ratio of flexural reinforcements and the ratio of shear rebars. The distribution of arch action and truss action which compose the mechanism of shear resistance is discussed. The increase of plastic deformation after yielding transforms the shear transfer by arch action into by truss action. This study proposes the deformation model for reinforced concrete coupling beams considering the bond slip of flexural reinforcement. The strain distribution model of shear reinforcements and flexural reinforcements based on test results is presented. The yielding of flexural reinforcements determines yielding states and the ultimate states of reinforced concrete coupling beam are defined as the ultimate compressive strain of struts and the degradation of compressive strength due to principal tensile strain of struts. The flexural-shear failure mechanism determines the ultimate state of RC coupling beams. It is expected that this model can be applied to displacement-based design methods.

Case Study on Groß Schönebeck EGS Project Research in Germany (독일 그로스 쉐네벡 EGS 실증 프로젝트 연구사례)

  • Min, Ki-Bok;Park, Sehyeok;Zimmermann, Gunter
    • Tunnel and Underground Space
    • /
    • v.25 no.4
    • /
    • pp.320-331
    • /
    • 2015
  • This paper presents a case study of an enhanced geothermal system(EGS) demonstration project conducted in $Gro{\ss}$ $Sch{\ddot{o}}nebeck$, Northerm Germany, focusing on hydraulic stimulation. The project was conducted with doublet system in sandstone and volcanic formations at 4 - 4.4 km depth. Under normal faulting to strike-slip faulting stress regime, hydraulic stimulations were conducted at injection and production wells by massive waterfrac and gel-proppant fracturing. Injectivity index increased from $0.97m^3/(hr^*MPa)$ to $7.5m^3/(hr^*MPa)$ and productivity index increased from $2.4m^3/(hr^*MPa)$ to $10.1m^3/(hr^*MPa)$ by a series of hydraulic stimulations at both wells. After circulation tests through injection and production wells, however, productivity index decreased from $8.9m^3/(hr^*MPa)$ to $0.6m^3/(hr^*MPa)$ in two years. Slip tendency analysis for the stimulation in volcanic layer estimated the required pressure for shear slip and its preferred orientations and it showed reasonable match with actual stimulation results. Through the microseismicity observation for the stimulation of volcanic formation, only 80 seismic events with its moment magnitudes in -1.8<$M_W$<-1.0 were observed, which are unexpectedly low for EGS hydraulic stimulation.

Evaluation of Steel Pull-Out of Reinforced Concrete Beam-Column Joints (철근콘크리트 보-기둥 접합부 철근의 뽑힘 평가)

  • Woo, Jae-Hyun;Park, Jong-Wook;Kim, Byoung-Il;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.833-841
    • /
    • 2010
  • In this report, the test results of five reinforced concrete beam-column joint subjected to cyclic load are presented. The main purpose of the research is to investigate the influence of the steel pull-out of the beam-column joints to the shear and ductile capacity of the RC beam-column assembles. In addition, the influence of the amount of beam reinforcement to the joint shear and ductile capacity is evaluated. Test results indicate that the yield penetration of steel bar increases as the joint shear strength ratio, $V_{j1}/V_{jby}$ decreases. And the slippage of the steel bars are varied according to the region of the beam-column joints. The pull-out of the steel bars of five specimens was almost the same regardless of the joint shear strength ratio, $V_{j1}/V_{jby}$. Because it was affected by not only the yield penetration of steel bar but also the axial elongation in the plastic hinge.