• Title/Summary/Keyword: 전단상호작용

Search Result 204, Processing Time 0.022 seconds

Shear-tendon Rupture Failure of Concrete Beams Prestressed with FRP Tendons (FRP를 사용한 프리스트레스트 콘크리트 보의 전단 텐던 파괴)

  • 박상렬
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.1
    • /
    • pp.133-141
    • /
    • 1998
  • FRP는 비부식성 및 고강도의 뛰어난 성질에도 불구하고 콘크리트 구조에 사용하는 데 있어서 소성의 결핍 및 낮은 전단강도와 같은 몇가지의 기술적인 단점을 가지고 있다. 특히 이 두가지 성질은 프리스트레스트 콘크리트보에 있어서 다우얼 작용이 일어나는 전단균열 단면에서와 같이 인장과 전단의 복합효과가 일어날 때 텐던의 조기 파괴를 일으키기 쉽다. 본 논문에서는 탄소 FRP연선을 사용한 프리스트레스트 콘크리트보에서의 텐던파열에 의한 전단파괴를 연구하였다. 전단시험 결과에 의하면 전단 텐던 파괴는 FRP를사용한 프리스트레스트 보에서만 일어나는 유일한 파괴형식으로 보의 전단강도를 저감시키는 것으로 확인되었다. 이러한 전단 텐던 파괴 과정을 규명하기 위하여 다우얼 시험을 실시하고 최초로 실용적인 시험장치 및 과정을 소개하였다. 다우얼 시험 결과에 의하면 FRP 연선은 인장과 전단의 상호작용에 의해 Tsai-Hill 파괴 기준에 따라 파괴되었다.

Seismic Behavior Evaluation of Unreinforced Masonry Structure Considering Soil-Structure Interaction (지반-구조물 상호작용을 고려한 비보강 조적조 구조물의 지진거동평가)

  • 김희철;김관중;홍원기
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.9-16
    • /
    • 2001
  • The purpose of this study is to evaluate a seismic behavior of unreinforced masonry(URM) structure. For more efficient evaluation, quasi-dynamic analysis method is used in this study. The influence of soil-structure interaction on the seismic response of low rise structures is discussed through comparison of the computed seismic response for the structure on rigid or dense soil and that on soft soil. The results of analytical study show that the story shear forces and the base shear forces could increase on soft soil. Furthermore, it was observed that an approximate expressions prescribed in current seismic codes may underestimate the value of the base shear force of low rise buildings on soft soil.

  • PDF

Evaluation of Shear Behavior of Beams Strengthened in Shear with Carbon Fiber Reinforced Polymer with Mohr's Circle (모어써클을 활용한 탄소섬유 전단보강된 보의 전단거동 평가)

  • Kim, Yun-Gon
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.527-534
    • /
    • 2016
  • Beams strengthened in shear with Carbon Fiber Reinforced Polymer (CFRP) which had different transverse reinforcement ratio were tested to evaluate shear contribution in the CFRP and to analyze shear behavior of each test with Mohr's circle. Strain in the CFRP should be evaluated to estimate the shear contribution in the CFRP which is brittle material. Test results were compared each other based on the Mohr's circle which can correlate shear strain with both principal tensile strain and crack angle. With low transverse steel ratio, shear strengthening with CFRP not only increases the shear strength effectively but also minimizes the loss in shear contribution of concrete by limiting the development of crack. With high transverse steel ratio, the effect on shear strengthening with CFRP is not as much as the beam with low ratio. Therefore, the shear contribution in the CFRP should be evaluated based on the strain compatibility which can consider the interaction between steel and CFRP when determining the shear capacity of a strengthened member.

Ground-Tunnel Interaction Effect Depending on the Ground Stiffness (지반의 강성변화에 따른 지반-터널 동적 상호작용 연구)

  • 김대상
    • Tunnel and Underground Space
    • /
    • v.11 no.4
    • /
    • pp.339-343
    • /
    • 2001
  • Shield tunnel having circular section located in the soil or soft rock layer is liable to deform in such a way that its two diagonal diameters crossing each other expand and contract alternately during earthquakes. Based on this knowledge, the ground-tunnel interaction effect for this particular vibration mode is investigated. The ground surrounding a tunnel is assumed to be a homogeneous elastic medium. The bonded boundary condition on the ground-tunnel interface is considered. This suggests a firm bond between the ground and the tunnel lining. As Poisson's ratio and stiffness of the ground increases, the strain induced within the tunnel lining increases.

  • PDF

A New Refined Truss Modeling for Shear-Critical RC Members (Part I) - lts derivation of Basic Concept - (전단이 지배하는 RC부재의 새로운 트러스 모델링 기법 연구 (전편) - 기본 개념 유도를 중심으로 -)

  • Kim Woo;Jeong Jae-Pyong;Kim Dae-Joong
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.785-794
    • /
    • 2004
  • This paper describes a new refined truss modeling technique derived based on the well-known relationship of V=dM/dx=zdT/dx+Tdz/dx in a reinforced concrete beam subjected to combined shear and moment loads. The core of the model is that a new perspective on the shear behavior can be gained by considering the variation of the internal arm length along the span, so that the shear resistance mechanism can be expressed by the sum of two base components; arch action and beam action. The sharing ratio of these two actions is determined by accounting for the compatibility of deformation associated to the two actions. Modified Compression Field Theory and the tension-stiffening effect formula in CEB/FIP MC-90 are employed in calculating the deformations. Then the base equation of V=dM/dx has been numerically duplicated to form a new refined truss model.

FLEXURE-SHEAR INTERACTION BEHAVIOR OF RC COLUMNS UNDER CYCLIC LOADING (주기하중을 받는 철근 콘크리트 기둥의 휨-전단간의 상호거동)

  • DoHyungLee
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.4
    • /
    • pp.213-219
    • /
    • 2003
  • This study in on the development of analytic model that can predict the hysterisis response of steel-concrete under the periodic loads. Analytic value and experimental value including developed model were compared and interpreted. From the comparing interaction between torque and shear was focused on the its importance.

  • PDF

미세유체 기술을 활용한 혈관 모사

  • Do, Jun-Sang
    • Journal of the KSME
    • /
    • v.50 no.11
    • /
    • pp.28-30
    • /
    • 2010
  • 이 글에서는 미세유체 기술을 활용하여 혈관 내의 유동에 의하여 발생하는 전단응력이 혈관 내부의 다양한 세포의 기능 및 상호작용에 미치는 영향을 연구하는 기술에 대하여 소개하고자 한다.

  • PDF

Numerical Analysis on the Effect of High-Shear in a Rotor-Stator Mixer (Rotor-Stator Mixer 전단효과에 관한 수치 해석적 연구)

  • Yeum, Sang Hoon;Lee, Seok Soon
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.39-48
    • /
    • 2019
  • The turbulent flow in the rotor-stator mixer is based on shear characteristics generated by the interaction of the stator with the rotor rotating at high speed. In this study, the flow characteristics analysis of the unsteady state generated by the interaction of the rotor and the stator in the prototype model of the emulsion-fuel related mixer development was performed with the MRF and SMM by applying the ANSYS FLUENT $k-{\varepsilon}$ (RKE) turbulence model. The behavior and shear characteristics of the flow particles generated at the interface between the designed rotor and stator, and trends such as velocity distribution and turbulence eddy dissipation, were predicted and verified using the CFD analysis.

A Study on Shear Characteristics of a Rock Discontinuity under Various Thermal, Hydraulic and Mechanical Conditions (다양한 열-수리-역학적 조건 하에서 불연속면 전단 거동 특성에 관한 실험적 연구)

  • Kim, Taehyun;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.26 no.2
    • /
    • pp.68-86
    • /
    • 2016
  • Understanding the frictional properties of rock discontinuities is crucial to ensure the stability of underground structures. In particular, the frictional behavior at depth depends on the complex interaction among mechanical, hydraulic, thermal and chemical characteristics and their coupled effects. In this study, a series of shear tests were carried out in a triaxial compression chamber to investigate the shearing behavior of saw-cut granite surface and rough shear surface of synthetic rocks. The test results were analyzed using Coulomb's shear strength criterion. The frictional behavior of saw-cut granite surface showed little variation at different confining, water pressures and temperature conditions, however in case of synthetic rocks, the frictional behavior showed different trend depending on normal stress level. In addition, the variation of stiffness and dilation at different testing conditions were analyzed, and the stiffness and dilation showed little variation at different water pressures and temperature conditions.