열-수리-역학적 상호작용 하에서 결정질 암석의 전단 거동 특성에 관한 실험적 연구

김태현, 전석원 (서울대학교)

1. 서 론

방사성폐기물 지하 처분장 건설을 위해서는 국내 암종을 대상으로 한 역학적, 수리적, 열적 상 호작용에 따른 암석의 거동을 살펴보는 것이 필수적이다. 이와 같은 특성을 규명하고자 열적, 수 리적 특성을 고려한 실내시험이 국내외 연구자들에 의해 수행되어 왔으나(Lockner et al., 1982), 국내의 경우 시험 장비 및 시험 조건의 복잡성으로 인해 외국의 연구결과에 대한 조사연구 단계 에 머무르고 있으며, 국내 암종의 역학적, 수리적, 열적 특성의 상호작용에 의한 거동 및 변형 특 성을 정량적, 정성적으로 규명하기 위한 연구사례는 부족한 상황이다. 그러므로 본 연구에서는 방 사성폐기물 처분장 주변의 상태를 고려하여 암석의 열적, 수리적 특성의 상호작용을 포함한 고온 삼축압축시험이 계획되었으며, 삼축압축실험을 통해 생성한 인공절리면에서의 전단거동특성 변 화를 관측하였다.

2. 다단삼축압축시험을 이용한 전단거동특성 분석

2.1 실험 방법

국내외 문헌 연구를 바탕으로 국내 여건에 적합한 방사성 폐기물 지하처분시설의 설계를 위해 국내 결정질 암석시료를 대상으로 수리적, 열적 조건을 고려한 절리면을 가진 시료의 고온하 다 단삼축압축시험이 계획되었다. 방사성폐기물 처분장 내 지하 암반의 상태는 주위 암반으로부터 작용하는 삼축 방향의 압력(역학적 특성), 암반 내부에 존재하는 지하수(수리적 특성) 및 저장용 기로부터 발생하는 열(열적 특성)이 상호 작용하고 있는 상태로, 본 연구에서 계획된 실내시험은 처분장 주변의 암반 상태를 모사하고자 하였다.

또한 일반적인 삼축압축시험은 하나의 파괴 포락선을 얻기 위해 3 개의 시료가 필요하나 다단 삼축압축시험은 하나의 시료에 대해 3 단계의 봉압이 모두 가해지기 때문에 시료의 수를 줄일 수 있으며, 동일한 시료에 대해 수행되기 때문에 시험결과의 신뢰성을 높일 수 있다는 장점이 있다 (Harouaka et al., 1995). 인공절리면을 갖는 결정질 암석의 경우 아직까지 고온삼축압축시험 결과 가 보고된 바가 없으며, 계획된 시험의 모식도는 그림 2.1과 같다. 인공절리면을 갖는 시료가 고 온삼축압축실험용 챔버 내에 위치하게 되며, 가압기 및 삼축압축챔버 등의 시험장치를 통해 삼축 압축시험이 수행된다. 수리적 조건을 위해 ISCO 사에서 제작된 시린지펌프(Syringe pump)를 이용 하여 시료 내부의 인공절리면에 설정된 수압을 가하며, 온도조절기를 통해 시료의 온도를 조절하 여 시험을 수행하게 된다. 실험시 고려될 열, 수리, 역학적 조건은 방사성폐기물처분장 주변의 특성 및 국내외 참고문헌 (권상기, 2003, 이형원, 1993)을 바탕으로 설정되었으며, 구체적인 내용은 표 2.1과 같다.

그림 2.1 수리적, 열적 상호작용을 고려한 고온삼축압축시험 모식도

표 2 1 실제시험시 고려된 소(실제시험시 고려된 조	건
--------------------	-------------	---

열적 특성(°C)	수리적 특성(MPa)	역학적 특성(MPa)	변위 속도 (mm/min)	가온 속도 (°C/min)
시료의 온도 : 20, 80	공극수압 : 0, 0.1	봉압 : 5, 10, 15 (또는 3, 7, 10)	3	3 이내

2.2 시료 정보

본 연구에서 사용된 시료는 한국원자력연구원 내 방사성폐기물처분을 위한 실증연구시설인 KAERI Underground Research Tunnel (KURT)에서 시추된 시료로 암종은 화강암이다.

본 실험에 앞서 인공절리면 파단면을 생성하기 위하여 봉압 10 MPa 의 조건에서 반복하중을 사용한 삼축압축시험을 수행하였다. 시료의 급격한 파괴를 방지하기 위해 시료의 변형률과 하중 을 함께 관측하여 항복점 이후에는 반복하중이 가해질 수 있도록 하였다. 시료는 계획된 4 가지 조건에 대해 각 2회 수행될 수 있도록 총 8 개를 성형하였다. 성형된 시료 중 수리적 조건이 고려 되는 H-M 및 T-H-M 총 4 개의 시료에 대해서는 절리면 내에 수압이 직접적으로 가해질 수 있도 록 3 mm 직경의 콘크리트 드릴날을 사용하여 보어홀을 성형하였다.

이와 같이 성형된 시료의 절리면은 하중이 가해지는 축과 20 ~ 26°의 가파른 기울기를 보였으 며, Barton 의 거칠기 기준을 적용할 경우 모든 시료의 거칠기는 10 ~ 14 수준으로 유사함을 보였 다. 시료명은 시험조건을 고려하여 설정되었으며, 시료의 정보는 표 2.2 및 그림 2.2와 같다.

표 2.2 시료 정보

시험 조건	시료명	채취 심도	시료 크기 (mm) (직경 × 높이)	파단면이 하중 축과 이루는 각도 (°)
М	M_1	69.9 - 70.01	47.7 × 104.4	25.8
	M_2	76.8 - 76.9	47.7 × 101.5	25.2
T-M	TM_1	68.9 - 69.0	47.7 × 105.0	21.3
	TM_2	72.43 - 72.54	47.7 × 106.7	25.2
H-M	HM_1	70.01 - 70.12	47.7 × 103.4	28.0
	HM_2	71.01 - 71.12	47.7 × 108.6	19.0
Т-Н-М	THM_1	77.5 - 77.6	47.7 × 106.4	20.0
	THM_2	76.7 - 76.8	47.7 × 100.0	20.0

(b) 정면에서 바라본 시료의 모습 그림 2.2 삼축압축실험을 통해 만들어진 시료의 파단면

3. 실험 결과 분석

시험은 역학적 조건(M), 열적 조건(T) + 역학적 조건(M), 수리적 조건(H) + 역학적 조건(M) 및 열적 조건(T) + 수리적 조건(H) + 역학적 조건(M) 으로 나누어 수행되었다. 시험을 통해 얻어진 결과는 시료의 변위-하중 곡선으로, 시료는 초기 간극 닫힘으로 인한 비선형 거동-> 탄성적 거동 ->미끄러짐으로 인한 비선형적 거동을 보였다. 시료가 미끄러짐으로 인해 비선형적 거동을 보이 게 되면 다음 단계의 봉압이 가해졌으며, 비선형적 거동이 시작되는 하중을 시료의 전단시 파괴 강도로 판단하였다.

실험 결과는 절리면에 작용하는 수직응력 및 전단응력을 계산한 후 선형회귀분석을 사용하여 o-t 평면상의 Mohr-Coulomb 파괴 포락선을 도시한 뒤 마찰계수를 통해 절리면의 마찰각을 획득 하였으며, 그 결과는 표 3.1과 같다.

실험 결과 역학적 조건만 고려된 M_1 및 M_2 시료에 비해 나머지 조건하에서 마찰각이 큰 폭 으로 감소하였음을 확인할 수 있다. 80°C 의 온도가 가해진 TM_1, TM_2 시료는 M_1 시료에 비해 마찰각이 각 80.0%, 61.9% 감소하였으며, 두 시료간의 마찰각 차이는 다소간의 거칠기 차이로 인 한 것으로 판단된다. 0.1 MPa 의 수압이 절리면에 가해진 HM_1, HM_2 시료는 M_1 시료에 비해 마찰각이 각 17.1%, 83.1% 감소하였다. HM_1 시료의 경우 다른 시료에 비해 마찰각이 크게 감소 하지 않았는데, 이는 10 MPa 단계의 봉압에서 거칠기의 1차 파쇄 이후 전단면이 굴곡이 큰 거칠 기를 거쳤기 때문인 것으로 판단된다. 열적, 수리적 조건이 모두 고려된 THM_1, THM_2 시료의 경우 M_1 시료보다 각 70.5%, 22.4% 감소하였으며, THM_2 시료의 마찰각이 크게 나온 것은 HM 2 시료와 마찬가지 이유로 판단된다.

시료명	봉압, σ3 (MPa)	수직응력 (MPa)	전단응력 (MPa)	마찰각 (°)	시료명	봉압, σ3 (MPa)	수직응력 (MPa)	전단응력 (MPa)	마찰각 (°)		
M_1	5	6.5	3.2	42.0	42.0	42.0 TM_1		5	5.1	0.2	
	10	14.9	10.2				TM_1	10	10.3	0.7	8.4
	15	24.2	19.1				.1	19.1		15	15.7
M_2	5	6.5	3.3	50.4	50.4 T		5	5.3	0.6		
	10	16.7	14.2			TM_2	10	10.9	1.9	16.0	
	15	29.6	31.0							15	16.8
HM_1	5	5.2	0.4	34.8	34.8		3	3.1	0.2		
	10	10.8	0.8			THM_1	7	7.4	1.2	12.4	
	15	20.6	10.5				10	10.7	1.9		
HM_2	5	5.1	0.2	7.1	7.1		3	3.1	0.4		
	10	10.2	0.5			THM_2	7	7.4	1.0	32.6	
	15	15.5	1.5				10	12.2	6.1		

표 3.1 인공절리면 시료의 고온 다단삼축압축시험 결과

4. 결 론

본 연구에서는 방사성폐기물지층처분 시설의 건설시 절리면에서의 열-수리-역학적 특성 변화를 살펴보기 위하여 실내시험을 수행하여 다음과 같은 결론을 얻었다.

- (1) 절리면에서의 열-수리-역학적 조건에 따른 전단거동 특성을 연구하고자 다단삼축압축시험 을 실시하였으며, 절리면에서의 전단거동은 온도 및 수압에 민감하게 반응하며 큰 폭으로 변화하였다.
- (2) 온도 증가로 인한 마찰각의 감소는 시료 내 열응력의 발생 및 열로 인한 균열 발생으로 인한 것으로 판단되며, 주사전자현미경 분석 등을 통해 시료의 파괴 전후 광물 입자 분석 등을 수행할 필요가 있으며 이를 통해 보다 신뢰성 있는 결과를 얻을 수 있을 것으로 예측된다.
- (3) 수압의 증가로 인한 마찰각의 감소는 절리면에 작용하는 수압으로 인해 수직응력이 감소하였기 때문인 것으로 판단되며, 또한 절리면 사이에 존재하는 물로 인해 절리면의 마찰각이 감소하는 것도 원인일 것으로 판단된다.

(4) 본 연구에서는 모든 시료의 거칠기를 동일한 것으로 가정하여 결과를 분석하였으나 실제 결과에서도 확인할 수 있듯이 몇 가지 경우에 대해서는 마찰각이 큰 차이를 보이고 있다. 이는 앞서 밝힌 바와 같이 시료의 거칠기 차이로 인한 것으로 보이며, 향후 동일하거나 유 사한 거칠기를 가진 시료를 다수 확보하여 다양한 조건에 대해 실험을 수행한다면 보다 정 량적이며 현장 적용 가능한 결과를 얻을 수 있을 것으로 판단된다.

참 고 문 헌

- Heekwang Lee, Seokwon Jeon, 2011, An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression, International Journal of Solids and Structures, Vol. 48, No. 6, pp. 979-999
- Jeongseok Yoon, Seokwon Jeon, 2004, Experimental verification of a (Punch Through Shear) PTS Mode II test for rock, International Journal of rock mechanics and mining sciences, Vol. 41, No. 3, pp. 353-354
- 권상기, 최종원, 강철형, 2003, 고준위 폐기물 처분장 near-field에 대한 열-역학적 민감도 분 석, 터널과 지하공간, Vol. 13, No. 2, pp.138-152
- 이형원, 1993, 암석의 열파괴와 강도 및 변형거동의 온도 의존성에 관한 연구, 서울대학교 대 학원 공학박사학위논문.
- Harouaka, A., Mtawaa, B., Al-Majed, A., Abdulraheem, A., Klimentos, T., 1995, Multistage triaxial testing of actual reservoir cores under simulated reservoir conditions, International Symposium of the Society of Core Analysts, pp.1-9
- Lockner, D. A., Summers, R., Moore, D., Byerlee, J. D., 1982, Laboratory measurements of reservoir rock from the Geysers geothermal field, California, International Journal of Rock Mechanics and Mining Sciences & Geomecahanics Abstracts, Vol. 19, pp. 65-80