• Title/Summary/Keyword: 전단상호작용

Search Result 204, Processing Time 0.029 seconds

Identification of damage states and damge indices of single box tunnel from inelastic seismic analysis (비탄성 지진 해석을 통한 박스 터널의 손상 상태 및 손상 지수 규명)

  • Park, Duhee;Lee, Tae-Hyung;Kim, Hansup;Park, Jeong-Seon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.119-128
    • /
    • 2016
  • In a performance-based design, the structural safety is estimated from pre-defined damage states and corresponding damage indices. Both damage states and damage indices are well defined for above-ground structures, but very limited studies have been performed on underground structures. In this study, we define the damage states and damage indices of a cut-and-cover box tunnel which is one of typical structures used in metro systems, under a seismic excitation from a series of inelastic frame analyses. Three damage states are defined in terms of the number of plastic hinges that develop within the structure. The damage index is defined as the ratio of the elastic moment to the yield moment. Through use of the proposed index, the inelastic behavior and failure mechanism of box tunnels can be simulated and predicted through elastic analysis. In addition, the damage indices are linked to free-field shear strains. Because the free-field shear strain can be easily calculated from a 1D site response analysis, the proposed method can be readily used in practice. Further studies are needed to determine the range of shear strains and associated uncertainties for various types of tunnels and site profiles. However, the inter-linked platform of damage state - damage index - shear wave velocity - shear strain provides a novel approach for estimating the inelastic response of tunnels, and can be widely used in practice for seismic designs.

Control of Plume Interference Effects on a Missile Body Using a Porous Extension (다공확장벽을 이용한 미사일 동체에 대한 플룸간섭 현상의 제어)

  • Young-Ki Lee;Heuy-Dong Kim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.4
    • /
    • pp.33-38
    • /
    • 2003
  • The Physics of the Plume-induced shock and separation Particularly at a high Plume to exit pressure ratio and supersonic speeds up to Mach 3.0 with and without a passive control method, porous extension, were studied using computational techniques. Mass-averaged Navier-Stokes equations with the RNG $\kappa$-$\varepsilon$ turbulence model were solved using a fully implicit finite volume scheme and a 4-stage Runge-Kutta method. The control methodology for plume-afterbody interactions is to use a perforated wall attached at either the nozzle exit or the edge of the missile base. The Effect of porous wall length on plume interference is also investigated The computational results show the main effect of the porous extension on plume-afterbody interactions is to restrain the plume from strongly underexpanding during a change in flight conditions. With control, a change in porous extension length has no significant effect rut plume interference.

A Study of the Control of Plume-Induced Flow over a Missile Afterbody (Missile Afterbody에서 Plume-Induced Flow의 제어에 관한 연구)

  • ;Young-Ki Lee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.45-48
    • /
    • 2003
  • The plume interference is a complex phenomenon, consisting of plume-induced boundary layer separation, separated shear layer, multiple shock waves, and their interactions. The base knowledge of plume interference effect on powered missiles and flight vehicles is not yet adequate to get an overall insight of the flow physics in plume-freestream flow field. Computational studies are performed to better understand the flow physics of the plume-induced shock and separation for Simple, Rounded, Porous-extension test model configurations. The present study simulates highly underexpanded exhaust plume effect on missile body at the transoni $c^ersonic speeds. In order to investigate the plume-induced separation phenomenon, Simple, Rounded and Porous-extension plate are attacked to the missile afterbody. The computational result shows that the rounded afterbody and the porous-extension wall attached at the missile base can alleviate the plume-induced shock wave and separation phenomenon and improve the control of the missile body.dy.

  • PDF

LES for Turbulent Duct Flow with Surface Mass Injection (질량분사가 있는 덕트 난류유동의 LES 해석)

  • Kim, Bo-Hoon;Na, Yang;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.232-241
    • /
    • 2011
  • The hybrid rocket shows interesting characteristics of complicated mixing layer developed by the interaction between turbulent oxidizer flow and injected surface mass flow from fuel vaporization. In this study, the compressible LES was conducted to explore the physical phenomena of surface oscillatory flow induced by the flow interferences in a duct domain. From the numerical results, the wall injection generates the stronger streamwise vorticites and the negative components of axial velocity accompanied with the azimuthal vorticity near the surface. And the vortex shedding with a certain time scale was found to be developed by hydrodynamic instability in the mixing layer. The pressure fluctuations in this calculation exhibit a peculiar peak at a specific angular frequency($\omega$=8.8) representing intrinsic oscillation due to the injection.

Numerical simulations of turbulent flow through submerged vegetation using LES (LES를 이용한 침수식생을 통과하는 난류흐름 수치모의)

  • Kim, Hyung Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6305-6314
    • /
    • 2015
  • This study presents numerical simulations of mean flow and turbulence structure of an open channel with submerged vegetation. Filtered Navier-Stokes equations are solved using large-eddy simulation (LES). The immersed boundary method (IBM) is employed based on a Cartesian grid. The numerical result is compared with experimental data of Liu et al. (2008) and shows that simulated results coincided reasonably with experimental data within the average error of 10%. Strong vortices are generated at the interface between vegetated and non-vegetated regions with spanwise extent. The generation of turbulence induced by shear at the interface is interfered with wake turbulence, resulting turbulence intensity maximum. Turbulence produced by shear affects the flow in vegetated region and the penetration depth increases with an increase in the submergence ratio. This result can be used to understand sediment transport mechanisms in the vegetated region.

Numerical simulation of debris flow behavior around cylindrical structures (원통형 구조물 주변 토석류 거동 수치모의)

  • Kim, Byung Joo;Paik, Joong Cheol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.93-93
    • /
    • 2022
  • 최근 이상기후로 인하여 우리나라 산림에 태풍 및 국지성 호우가 빈번히 발생하고 있다. 이로 인해 사면재해가 많이 발생하고 있으며 그 중 호우로 인한 많은 양의 물과 함께 토석 및 부유물이 중력에 의해 경사면을 따라 흐름 형태를 보이는 토석류 재해는 속도가 매우 빠르고 파괴적이며 그 결과는 비참하기까지 하다. 더구나 인구밀도가 낮은 산지 계곡부 뿐만 아니라 도시지역에서도 토석류 재해가 빈번히 발생하며 국내 및 해외에서도 토석류에 의한 피해사례는 자주 볼 수 있다. 이러한 토석류 재해의 피해를 줄이고자 토석류의 유동성을 저감시키기 위한 대책구조물의 시공이 많이 이루어지고 있으며 최근에는 투과형 구조물 중 하나인 원통형 기둥구조물을 그룹 형태로의 시공하는 경우가 늘어나고 있다. 토석류와 대책구조물 간의 상호작용은 월류(overflow), 쳐오름(run-up), 역류(backwater) 등의 복잡한 흐름 거동을 보인다. 하지만 원통형 대책구조물에 대한연구가 많이 이루어져 있지 않고 대규모 실험 또한 비용이 많이 소요되고 실행하기도 어렵다. 이 연구는 오픈소스 소프트웨어인 OpenFOAM을 사용하여 원통형 대책구조물의 설치 조건에 따라 토석류 흐름에 미치는 영향을 분석하였다. 짧은 시간 내에 흐름이 발생하고 비뉴튼 유체 특성을 갖는 토석류의 유효전단응력이 난류전단응력에 비해 상당히 크므로 난류의 영향은 무시하였다. 계산된 수치모의의 결과를 같은 규모로 시행한 실험결과와 비교분석 및 검증하였다. 공학학적 문제에 적용 가능하도록 비교적 낮은 해상도의 계산 격자를 사용했지만 실험에서 보여지는 토석류의 흐름거동을 양호하게 재현했으며 원통형 대책구조물의 배치조건에 따라 토석류 선단부 유속의 감소 정도 및 시간에 따른 흐름깊이 변화를 분석할 수 있었다. 이 연구는 다양한 조건을 가지는 토석류 흐름을 해석하는데 유용하게 활용할 수 있으며, 추후 복잡한 실제지형 조건을 고려하는 연구를 통하여 적용성을 확보하고자 한다.

  • PDF

A Study on the Behaviour of Single Piles to Adjacent Tunnelling in Stiff Clay (견고한 점토층에서 실시된 터널근접시공으로 인한 단독말뚝의 거동에 대한 연구)

  • Jeon, Youngjin;Lee, Cheolju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.6
    • /
    • pp.13-22
    • /
    • 2015
  • In the current work, a series of three-dimensional (3D) numerical modelling has been performed in order to study the effects of the relative locations of tunnels with respect to the position of pile tips which governs the behaviour of pre-existing, adjacent single piles. In the numerical analyses, several governing factors, such as tunnelling-induced pile head settlements, relative displacements, volume losses, axial pile forces, interface shear stresses and apparent factors of safety have been analysed. When the pile tips are inside the tunnelling influence zone, of which the pile tip location is considered with respect to the tunnel position, tunnelling-induced pile head settlements are larger than the ground surface settlements, resulting in tunnelling-induced tensile pile forces. On the contrary, when the pile tips are outside the influence zone, compressive pile forces associated with downward shear stresses at the upper part of the piles are developed. Based on computed load and displacement relation of the pile, the apparent factors of safety of the piles inside the tunnelling influence zone have been reduced by 36% in average. The shear transfer mechanism based on the relative tunnel locations has been analysed in great detail by considering tunnelling-induced pile forces, interface shear stresses and the apparent factors of safety.

A Fundamental Study on Shearing/Bonding Characteristics of Interface Between Rock Mass and Backfills in Mine Openings (폐광산 채움재와 암반 경계부의 전단 및 접합특성에 관한 기초 연구)

  • Kim, Byung-Ryeol;Lee, Hyeon-woo;Kim, Young-Jin;Cho, Kye-Hong;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.623-646
    • /
    • 2021
  • As the demand for electric power increases with acceleration of electrification at home and abroad, the needs for coal-fired electrical power plant are accordingly increased. However, these coal-fired electrical power plants induce also many environmental problems such as increase of air pollutants, increase of possibility of land contamination by reclamation of coal ash, even though these power plants have a good economical efficiency. In case of a by-product of coal-fired electrical power plants, only 70% of them are recycled and the remaining 30% of by-product are fully buried in surrounding ground. Consequently, this study deals with coal ash backfilling mechanism in abandoned mine openings for the purposes of increasing the coal ash recycling rate as well as securing the mine area stability. In order to analyze the backfill and ground reinforcement by interaction between rock mass and backfills, the copying samples of discontinuous surface with different roughnesses were produced for bond strength tests and direct shear tests. And statistical analysis was also conducted to decide the characteristics of bond and shear behavior with joint roughness and their curing day. Numerical simulations were also analyzed for examining the effect of interface behavior on ground stability.

Effect of various surface treatment methods of highly translucent zirconia on the shear bond strength with resin cement (고투명도 지르코니아의 다양한 표면처리 방법이 레진시멘트와의 전단결합강도에 미치는 영향)

  • Yu-Seong Kim;Jin-Woo Choi;Hee-Kyung Kim
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.3
    • /
    • pp.179-188
    • /
    • 2023
  • Purpose. The purpose of this study was to evaluate the effect of surface treatments on the shear bond strength of two types of zirconia (3-TZP and 5Y-PSZ) with resin cement. Materials and methods. Two different types of zirconia specimens with a fully sintered size of 14.0×14.0×2.0 mm3 were prepared, polished with 400, 600, and 800 grit silicon carbide paper, and buried in epoxy resin. They were classified into four groups each control, sandblasting, primer, and sandblasting & primer. Cylindrical resin adhered to the surface-treated zirconia with resin cement. It was stored in distilled water (37℃) for 24 hours, and a shear bond strength test was performed. The normality of the experimental group was confirmed with the Kolmogorov-Smirnov & Shapiro-Wilk test. The interaction and statistical difference were analyzed using a two-way ANOVA. A post-hoc analysis was performed using Dunnett T3. Results. As a result of two-way ANOVA, there was no significant difference in shear bonding strength between zirconia types (P > .05), but there was a significant correlation in the sandblasting, primer, and alumina sandblasting & primer group (P < .05). Dunnett T3 post-test showed that, regardless of the type of zirconia, shear bonding strength was sandblasting & primer > Primer > sandblasting > control group (P < .05). Conclusion. There was no difference in shear bond strength between the types of zirconia. The highest shear bond strength was shown when the mechanical and chemical treatments of the zirconia surface was performed simultaneously.

Lateral Force Resisting System of Flat Plate Structure based on KBC 2008 Draft (KBC2008(안)에 근거한 무량판구조의 횡력저항시스템)

  • Kim, Do-Hyun;Lee, Hyun-Ho;Kim, Young-Sik;Woo, Sung-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.871-874
    • /
    • 2008
  • In the beginning of KBC-2005, many structural engineers had have difficulty in designing the flat plate structures. Recently KBC-2005 has been revising. At this point, we need to study the lateral resisting systems which are based on KBC-2008 draft and applicable to the flat plate structure. When the RC structure system of KBC 2008 draft is compared with that of KBC-2005, there are some differences. (1) Structural system and height limitations according to seismic design category (2) Special Requirement such as special RC shear wall (3) New lateral force resisting system such as shear wall-frame interaction system The KBC-2008 will give structural engineers to choose the various lateral force resisting system

  • PDF