• Title/Summary/Keyword: 전단보강근비

Search Result 16, Processing Time 0.023 seconds

Evaluation of the Minimum Shear Reinforcement Ratio of Reinforced Concrete Members (철근콘크리트 부재의 최소전단보강근비의 평가)

  • Lee Jung-Yoon;Yoon Sung-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.43-53
    • /
    • 2004
  • The current Korean Concrete Design Code(KCI Code) requires the minimum and maximum content of shear s in order to prevent brittle and noneconomic design. However, the required content of the steel reinforcement In KCI Code is quite different to those of the other design codes such as fib-code, Canadian Code, and Japanese Code. Furthermore, since the evaluation equations of the minimum and maximum shear reinforcement for the current KCI Code were based on the experimental results, the equations can not be used for the RC members beyond the experimental application limits. The concrete tensile strength, shear stress, crack inclination, strain perpendicular to the crack, and shear span ratio are strongly related to the lower and upper limits of shear reinforcement. In this research, an evaluation equation for the minimum content of shear reinforcement is theoretical proposed from the Wavier's three principals of the mechanics of materials.

A Study on the Shear Characteristic of├ Type Reinforced Concrete Joints under Cyclic Loading (반복하중을 받는 ├형 철근콘크리트 접합부의 전단특성에 관한 연구)

  • 이상호;이동화
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.73-82
    • /
    • 2001
  • 본 연구는 실험적 방법과 해석적 방법을 통하여 반복하중을 받는 ├형 철근콘크리트 접합부의 전단특성을 파악함을 목적으로 한다. ├형 접합부는 고강도 재료의 사용으로 인한 체적의 감소 뿐만 아니라, 지진발생 시 반복하중의 작용으로 인한 변동축력 등으로 , 구조적으로 취약한 부분이 될 가능성이 있다. 따라서 본 연구에서는 ├형 접합부의 전단특성을 파악하기 위하여 기동축력, 콘크리트 압축강도, 접합부 전단보강근비를 변수로 한 12개의 실험체를 제작하여 가력실험을 수행하였다. 또한, 유한요소 해석을 수행하여 본 실험결과와의 비교 검토를 통하여 타당성을 검토한 후, 기둥축력과 콘크리트 압축강도의 변화에 대한 변수해석을 통하여 접합부의 전단강도에 미치는 변수는 영향을 파악하였으며, 실험에 의한 실험체의 전단내력을 기존에 제안된 AIJ, ACI 규준 등과 비교 검토하였다. 본 연구의 결로부터 기둥축력과 콘크리트 압축강도가 ├형 철근콘크리트 접합부의 전단강도에 미치는 영향을 확인하였다.

  • PDF

Concrete Shear Strength of FRP Bar Reinforced Concrete BeamAccording to Variation of Flexural Reinforcement Ratio (FRP Bar 콘크리트 보의 휨보강근비 변화에 따른 콘크리트 전단강도)

  • No, Kyeung-Bae;Jin, Chi-Sub;Jang, Hui-Suk;Kim, Hee-Sung;Hwang, Geum-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.76-82
    • /
    • 2006
  • The concrete shear strength of FRP Bar reinforced concrete beam according to the variation of flexural reinforcement ratio was investigated. A number of experimental result showed that the concrete shear strength was lower than that of RC beam, but it was increased according to the increasement of reinforcement ratio. Shear strength correction factors considering the kind and reinforcement ratio of FRP Bar was proposed using the proposed formula in the literature and regression analysis of the experimental result.

Strength and Ductility of Steel Fiber Reinforced Composite Beams without Shear Reinforcements (전단보강근이 없는 강섬유 보강 합성보의 강도 및 연성 능력)

  • Oh, Young-Hun;Nam, Young-Gil;Kim, Jeong-Hae
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.103-111
    • /
    • 2007
  • Experimental study was carried out to investigate the structural performance of composite beams with steel fiber concrete and angle. For this purpose, seven specimens composed of two RC beams with or without steel fiber and five composite beams with steel fiber and angle were constructed and tested. All specimens had no web shear reinforcement. Main variables for the specimens were tensile reinforcement ratio and fiber volume fraction. Based on the test results, structural performance such as strength, stiffness, ductility and energy dissipation capacity was evaluated and compared with the predicted strength. The prediction of flexure and shear strength gives a good relationship with the observed strength. The strength, ductility and energy dissipation capacity are increased, as the fiber volume fraction is increased. Meanwhile, high tensile reinforcement ratio resulted in the reduction of ductility and energy dissipation capacity for the composite beams.

Concrete Shear Strength of FRP Reinforced Concrete Beam (FRP 보강근을 사용한 콘크리트 보의 콘크리트 전단강도)

  • Cho, Jae Min;Jang, Hee Suk;Kim, Myung Sik;Kim, Chung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3A
    • /
    • pp.259-266
    • /
    • 2009
  • This study is to develop equations that consider the elastic modulus ratio of FRP bar and steel reinforcement, shear span to depth ratio, and flexural reinforcement ratio of FRP bar, to determine concrete shear strength of FRP reinforced concrete beams without shear reinforcement. As experimental parameters, 2 types of FRP bar, 3 types of shear span to depth ratio, and 3 types of flexural reinforcement were used. Experimental results for two of shear span to depth ratio were quoted from previous study to evaluate effect of shear span to depth ratio in more detail. Shear strength correction factors needed for evaluating concrete shear strength were proposed from regression analysis using above experimental results. Equations suggested from this study and other codes were examined and compared with 31 experimental results available in the literature. From this comparison, it could be known that the equation suggested from this study gives the most approaching result to experimental results.

Effects of Shear Reinforcements on the Reinforced High-Strength Lightweight Concrete Beams (고강도 경량 철근콘크리트보의 전단보강 효과)

  • Shin, Sung-Woo;Lee, Kwang-Soo;Ahn, Jong-Mun;Choi, Myung-Shin
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.89-97
    • /
    • 1999
  • In this study, fifteen reinforced high-strength lightweight concrete(HLC)beams were tested to investigate shear behavior of specimens according to shear reinforcement ratio. Test variables are shear span to effective depth ratio(a/d=2.5, 3.5, 4.5) and shear reinforcement ratio(0~1.0${\rho}_{v,ACI}$). Concrete compressive strength and tensile steel reinforcement ratio are constantly 439kg/$cm^2$ and 0.0203, respectively. Test results for the HLC beams showed that ACI code equation underestimates the shear strength of concrete($V_c$), and overestimates the shear strength of shear reinforcements($V_s$). It is revealed that the effectivenesses of shear reinforcements of reinforced HLC beams are lower than those of normal weight concrete beams. Then, the shear strengths of shear reinforcements are increased in proportion not to first degree of shear reinforcement ration but to square root of them.

Capacity Evaluation of High Strength SFRC Beams according to Shear Span to Depth Ratio (전단경간비에 따른 고강도 SFRC보의 성능 평가)

  • Lee, Hyun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.76-83
    • /
    • 2014
  • The purpose of this study is to evaluate the shear strengthening effect of steel fiber in high strength SFRC beams. For this purpose, 13th specimens are prepared and structural tests are performed. Testing variables are shear span to depth ratio, steel fiber volume fraction, shear strengthening ratio in 60 MPa SFRC concrete. From the reviewing of previous researches and analyzing of material and member test results, shear span to depth ratio 2.5 and steel fiber volume fraction 1.0% can be having a maximum strengthening effect in steel fiber. Proposed shear strength estimation equation, which is considering steel fiber strengthening and shear span to depth ratio effect, underestimate the shear capacity of high strength SFRC beams. Therefore a detailed research on strength characteristics of high strength SFRC beams are needed.

Experimental Study on Improvement of Bond Performance of RC Beams with High-Strength Shear Reinforcement (고강도 전단철근을 사용한 철근콘크리트 보의 부착성능 향상에 관한 실험적 연구)

  • Kim, Sang-Woo;Kim, Do-Jin;Yoon, Hye-Sun;Baek, Sung-Cheol;Kim, Kil-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.527-534
    • /
    • 2010
  • This study presents a simple method to improve the bond performance of reinforced concrete (RC) beams having high-strength shear reinforcement. In general, the yield strength and the ratio of shear reinforcements are the main parameters governing the shear capacity of RC beams. The yield strength of shear reinforcement, however, has little influence on the bond capacity of RC beams. Therefore, a sudden bond failure of the members with high-strength shear reinforcement can occur before flexural failure. To estimate the structural performance of the proposed method, four RC beams were cast and tested. The main test parameters were the yield strength, ratio, and reinforcing types of shear reinforcements. The experimental results indicated that the proposed method was able to effectively improve the bond performance of RC beams with high-strength shear reinforcement.

Shear Behavior of Concrete Beams Reinforced with FRP Bar (FRP Bar 보강 콘크리트 보의 전단거동)

  • Choi, Ik-Chang;Jung, Dae-Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.4
    • /
    • pp.403-409
    • /
    • 2013
  • Shear behavior of concrete beams reinforced with steel and/or FRP bar is studied through experimental tests. Experimental parameters includes the mechanical properties of reinforcements in shear and bending, and the ratio of shear reinforcement. The validity of the modified truss analogy, that has been widely accepted as a basis for the practical shear design of concrete beams, has been examined thoroughly by analyzing experimental results. The experimental results indicate that the modified truss analogy cannot be directly adopted to the shear problem of concrete beams reinforced with FRP bar.

Experimental Study for GFRP Reinforced Concrete Beams without Stirrups (스터럽이 없는 GFRP 보강근 콘크리트 보에 대한 실험적 연구)

  • Ko, Seong-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.21-29
    • /
    • 2014
  • This paper evaluates the shear strength, behavior and failure mode of reinforced concrete beams with deformed GFRP reinforcing bar. Four concrete beam specimens were constructed and tested. It was carried out to observe failure behavior and load-deflection of simply supported concrete beams subjected to four-point monotonic loading. In order to eliminate of the uncertainty by the shear reinforcements, any stirrups were not used. Variables of the specimens were shear span-depth ratio, effective reinforcement ratio. The dimensions of specimen is 3,300 or $1,950mm{\times}200mm{\times}240mm$. Clear span and shear span were 2,900mm, 1,000mm respectively. Shear span-depth ratios were 6.5 and 2.5. Effective ratios of Longitudinal GFRP reinforcing bar were $1.126{\rho}_{fb}$, $2.250{\rho}_{fb}$, $3.375{\rho}_{fb}$ and $0.634{\rho}_{fb}$. All beam specimens were broken by diagonal-tension shear and the ACI 440.1R, CSA S806 and ISIS, which was used to design test beams, showed considerable deviation between prediction and test results of shear strengths.