• Title/Summary/Keyword: 전단면 압축거동

Search Result 58, Processing Time 0.025 seconds

Nonlinear Biaxial Shear Model for Fiber-Reinforced Cementitious Composite Panels (섬유보강 고인성 시멘트 복합체 패널의 2축 전단 비선형 모델)

  • Cho, Chang-Geun;Kim, Yun-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.597-605
    • /
    • 2009
  • The present study has been proposed a model for the in-plane shear behavior of reinforced(Engineered Cementitious Composite(ECC) panels under biaxial stress states. The model newly considers the high-ductile tensile characteristic of cracked ECC by its multiple micro-cracking mechanism, the compressive strain-softening characteristic of cracked ECC, and the shear transfer mechanism in the cracked interface of ECC element. A series of numerical analyses were performed, and the predicted curves were compared with experimental results. The proposed in-plane shear model, R-ECC-MCFT, was found to be well matched with the experimental results, and it was also demonstrated that reinforced ECC panel showed more improved in-plane shear strength and post peak behavior, in comparing with the conventional reinforced concrete panel.

Plasticity Model for Directionality of Concrete Crack Damages (콘크리트 균열 손상의 방향성을 고려한 다중파괴기준 소성 모델)

  • Kim, Jae-Yo;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.655-664
    • /
    • 2007
  • The inherent characteristic of concrete tensile cracks, directional nonlocal crack damage, causes so-called rotating tensile crack damage and softening of compressive strength. In the present study, a plasticity model was developed to describe the behavior of reinforced concrete planar members In tension-compression. To describe the effect of directional nonlocal crack damage, the concept of microplane model was combined with the plasticity model. Unlike existing models, in the proposed model, softening of compressive strength as well as the tensile crack damage were defined by the directional nonlocal crack damage. Once a tensile cracking occurs, the microplanes of concrete are affected by the nonlocal crack damage. In the microplanes, microscopic tension and compression failure surfaces are calculated. By integrating the microscopic failure surfaces, the macroscopic failure surface is calculated. The proposed model was implemented to finite element analysis, and it was verified by comparisons with the results of existing shear panel tests.

Structural Behavior of Composite Basement Wall According to Shear Span-to-Depth Ratio and FE Analysis Considering the Condition of Contact Surface (전단경간비에 따른 합성지하벽의 거동과 접촉면의 조건을 고려한 유한요소 해석)

  • Seo, Soo Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.118-126
    • /
    • 2011
  • The objective of this paper is to study the structural behavior of Composite Basement Wall (CBW) according to shear span-to-depth ratio through an experiment and predict the nonlinear behavior of CBW by using ADINA program widely has been being used for FE analysis. Especially, this study focuses on the part of CBW in which the Reinforced Concrete (RC) is under compression stress; At the region of CBW around each floor, RC part stresses by compressive force when lateral press by soil acts on the wall. The contact condition between RC wall and steel (H-Pile) including stud connector is main factor in the analysis since it governs overall structural behavior. In order to understand the structural behavior of CBW whose RC part is under compressive stress, an experimental work and finite element analysis were performed. Main parameter in the test is shear span-to-depth ratio. For simplicity in analysis, reinforcements were not modeled as a seperated element but idealized as smeared to concrete. All elements were modeled to have bi-linear relation of material properties. Three type of contact conditions such as All Generate Option (AGO), Same Element Group Option with Tie(SEGO-T) and Same Element Group Option with Not tie(SEGO-NT) were considered in the analysis. For each analysis, the stress flow and concentration were reviewed and analysis result was compared to test one. From the test result, CBW represented ductile behavior by contribution of steel member even if it had short shear span-to-depth ration which is close to "1". The global composite behavior of CBW whose concrete wall was under compressive stress could be predicted by using contact element in ADINA program. Especially, the modeling by using AGO and SEGO-T showed more close relation on comparing with test result.

Nonlinear Shear Model of Fiber-Reinforced Cementitious Composite Panels (고인성 시멘트 복합체 패널의 비선형 전단모델)

  • Cho, Chang-Geun;Kim, Yun-Yong;Kim, Jeong-Sup
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.155-156
    • /
    • 2010
  • In current study, a nonlinear model for the shear behavior of Fiber-Reinforced Cementitious Composite (FRCC) panels has been introduced. The model is dealing with the multiple micro-cracking mechanism of FRCC materials which induce the high-ductile tensile characteristic, the compressive strain-softening, and the shear transfer mechanism in the cracked FRCC.

  • PDF

Shear Strength and Failure Mode of Architectural Masonry Walls (내진보강된 치장조적벽의 파괴특성과 전단강도)

  • Jin, Hee-Yong;Han, Sang-Whan;Park, Young-Mi
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.89-92
    • /
    • 2008
  • This study investigates the shear behavior of architectural masonry veneer wall reinforced with specific reinforcement details proposed by this study. For this purpose, experimental tests were conducted using one un-reinforced masonry(URM) wall specimen and three reinforced masonry(RM) wall specimens under quasi static cyclic loads. Un-reinforced(plain) masonry wall is expressed that behavior and failure mode are different for aspect ratio(L/H) and axial compressive force. The test variables are wall aspect ratio and presence of reinforcement. These specimens are masonry structure for architectural clading that is not to exist the axial compressive force. thus the axial compressive force is excepted from test variable. Test result, Behavior of specimens are dominated over rocking mode, but final failure modes are combined with different behaviors. And FEMA273 has proposed the equation of shear strength of masonry pier subjected to in-plane loading. Shear strength equations are classified four types of failure mode that is Rocking, and Toe-Crushing, Bed-Joint-Sliding and Diagonal-Tension. FEMA273 equations predict the behavior modes well, but shear strength is shown in different result.

  • PDF

An Experimental Study for the Scale Effects on Shear Behavior of Rock Joint (절리면 전단거동의 크기효과에 관한 실험적 연구)

  • Lee, Sang-Eun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.3
    • /
    • pp.31-41
    • /
    • 2006
  • The scale effect of specimens on the shear behavior of joints is studied by performing direct shear tests on six different sizes in Granite. The peak and residual shear stress, shear displacement, shear stiffness, and dilation angle are measured with the different normal stress(0.29~2.65MPa) and roughness parameters. It is also shown that both the joint roughness coefficient(JRC) and the joint compression strength(JCS) reduce with increasing joint length. A series of shear tests show about 56~67% reduction in peak shear stress, and about 18~44% in residual shear stress, respectively as the contact area of joint increases from 12.25 to $361cm^2$. Also the variation of dilation angle is $27^{\circ}$ at normal stress of 0.29 MPa and $6^{\circ}$ at normal stress of 2.65 MPa, respectively. The envelopes considering scale effect for JRC are made for the peak shear strength of rock joint in comparison with the Barton's equation.

  • PDF

A Numerical Study for Stability of Tunnel in Jointed Rock Using Barton-Bandis Model (BB절리모델을 활용한 절리암반속 터널안정성의 수치해석적 연구)

  • Lee, Sung-Ki;Chung, Hyung-Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.3
    • /
    • pp.15-29
    • /
    • 2001
  • For the pertinent use of NMT method, both characteristics of joints (JRC, JCS and ${\phi}_r$) and characteristics of rock mass (Q-Value) must be investigated carefully. The main objective of the study presented is to investigate how sensitive the predicted behaviour of an underground excavation is to various realistic assumptions about some input parameter for the jointed rock mass. Joint pattern in the tunnel is predicted by statistical approach (chi-square test). In this paper, sensitivity studies involving in joint characteristics were carried out. The parametric studies involving change in Barton-Bandis joint model have shown that JCS is relatively insensitive to JRC and ${\phi}_r$. An increase in JRC value may not, according to the Barton-Bandis model, necessarily lead to a decrease in displacement. The importance of dilation in predicting the behaviour of a rock mass around an excavation is emphasized from a comparison of the Barton-Bandis joint behaviour model with the Mohr-Coulomb model. The Barton-Bandis model predicted higher stress, which allow for the build-up of stress caused by dilatant behaviour.

  • PDF

Stability Analysis of Waste Landfill Using Multi-interface Element Numerical Method (복합 경계면요소 수치해석에 의한 매립지 안정성 해석)

  • 장연수;김홍석
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.4
    • /
    • pp.29-38
    • /
    • 2004
  • A finite element nonlinear stress-deformation model with multi-interface element is applied to the stability analysis of waste landfill slope. Strength parameters of waste and geosynthetic materials are obtained from the triaxial test of waste and the direct shear test of geosynthetics, respectively. The landfill models used for the numerical models are fit to regulations of the Korean waste management law. The results of the strength tests showed linear behavior for the waste and nonlinear behavior for the eosynthectic materials. The stability analysis with multi-interface element for the geosynthetic materials in the liner system showed large shear stress and slippage at the boundary of the foundation and the slope of the waste fill. This analysis verified the necessity of multi-interface analysis for waste landfills with composite liners.

Unified Constitutive Model for RC Planar Members Under Cyclic Load (주기하중을 받는 철근 콘크리트 면부재에 대한 통합구성모델)

  • 김재요;박홍근
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.239-248
    • /
    • 2002
  • A constitutive model unifying plasticity and crack damage mode)s was developed to address the cyclic behavior of reinforced concrete planar members. The stress of concrete in tension-compression was conceptually defined by the sum of the compressive stress developed by the strut-action of concrete and the tensile stresses developed by tensile cracking. The plasticity model with multiple failure criteria was used to describe the isotropic damage of compressive crushing affected by the anisotropic damage of tensile cracking. The concepts of the multiple fixed crack damage model and the plastic flow model of tensile cracking were used to describe the tensile stress-strain relationship of multi-directional cracks. This unified model can describe the behavioral characteristics of reinforced concrete in cyclic tension-compression conditions, i.e. multiple tensile crack orientations, progressively rotating crack damage, and compressive crushing of concrete. The proposed constitutive model was implemented to finite element analysis, and it was verified by comparison with existing experimental results from reinforced concrete shear panels and walls under cyclic load conditions.

Interface Behavior of Concrete Infilled Steel Tube Composite Beam (콘크리트충전 강관 합성보의 계면거동)

  • Lee, Yong-Hak;Lee, Ta;Jeong, Jong-Hyeon;Kim, Hyeong-Ju;Park, Kun-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.9-18
    • /
    • 2014
  • Interface behavior and confining effects of concrete-infilled steel tube (CFT) composite beam were investigate based on the experimental observations and numerical analyses. For this purpose, laboratory four-points bending tests were performed for the two test specimens of 1,000mm long CFT composite beams. The test beams were made of ${\phi}110mm$ and 4.5mm thick steel tube and 10mm thick steel web and bottom flange. Therefore, concrete infilled in steel tube was in compression through the entire cross section due to the web and bottom flange. Two end section conditions, with end section cap and without end section cap, were considered in experiments to monitor the relative slip displacement at ends and induce confining effects at center. In numerical aspects, finite element analysis considering steel-concrete interface behavior was performed and compared to the experimental results.