• Title/Summary/Keyword: 전단각

Search Result 1,116, Processing Time 0.025 seconds

Nonlinear Analysis of Shear Behavior on Pile-Sand Interface Using Ring Shear Tests (링전단시험을 이용한 말뚝 기초-사질지반 간 인터페이스 거동 분석)

  • Jeong, Sang-Seom;Jung, Hyung-Suh;Whittle, Andrew;Kim, Do-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.5
    • /
    • pp.5-17
    • /
    • 2021
  • In this study, the shear behavior between pile-sandy soil interface was quantified based on series of rigorous ring shear test results. Ring shearing test was carried out to observe the shear behavior prior to failure and behavior at residual state between most commonly used pile materials - steel and concrete - and Jumunjin sand. The test was set to clarify the shear behavior under various confinement conditions and soil densities. The test results were converted in to representative friction angles for various test materials. Additional numerical analysis was executed to validate the accuracy of the test results. Based on the test results and the numerical validation, it was found that due to the dilative and contractive nature of sand, its interface behavior can be categorized in to two different types : soils with higher densities tend to show peak shear stress and moves on to residual state, while on the other hand, soils with lower densities tend to show bilinear load-transfer curves along the interface. However, the relative density and the confining stress was found to affect the friction angle only in the small train range, and converges as it progresses to large deformation. This study established a large deformation analysis method which can successfully simulate and predict the large deformation behavior such as ring shear tests. Moreover, the friction angle derived from the ring shear test result and verified by numerical analysis can be applied to numerical analysis and actual design of various pile foundations.

Assumption of Shear Strength on Failed Discontinuities Due to Back Analysis (붕괴사면에서 역해석기법에 의한 활동면의 전단강도 추정)

  • 유병옥
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.213-227
    • /
    • 2002
  • 절토사면의 붕괴원인은 토질 및 지질조건, 지형, 강우, 지하수 및 지표수, 사면형상, 굴착 및 발파와 같은 인위적인 조건, 사면보호공 등과 같이 다양한 영향이 있을 수 있으나 가장 많은 영향을 주는 원인으로 토질 및 지질적인 조건이라고 할 수 있다. 본 논문은 이러한 지질조건에서 붕괴가 발생될 경우의 활동면에 대한 전단강도 추정하는 방법에 있어 역해석법에 의한 활동면의 전단강도 추정을 연구하였다 연구결과 붕괴된 사면에서 화성암은 마찰각 20$^{\circ}$~30$^{\circ}$, 점착력 0~2t/$m^2$의 범위를 가지며 퇴적암에서는 마찰각 $10^{\circ}$~17$^{\circ}$, 점착력 0~2.5t/$m^2$의 범위, 변성암에서는 마찰각 $10^{\circ}$~40$^{\circ}$, 점착력 0~4.0t/$m^2$의 범위가 우세한 것으로 나타났다. 그리고 지질구별 구분에 의하면, 절리에 의해 붕괴가 발생된 경우에는 마찰각 30$^{\circ}$~40$^{\circ}$, 점착력 0~3.5t/$m^2$, 엽리면은 마찰각 30$^{\circ}$~35$^{\circ}$, 점착력 0.5~3.0t/$m^2$, 단층면은 마찰각 11$^{\circ}$~38$^{\circ}$, 점착력 0~3.0t/$m^2$, 층리면은 마찰각 $10^{\circ}$~17$^{\circ}$, 점착력 0~2.5t/$m^2$ 정도의 범위를 갖는 것으로 나타났다.

  • PDF

Shear Behavior Prediction of Reinforced Concrete Beams by Transformation Angle Truss Modul (변환각 트러스 모델에 의한 철근콘크리트 보의 전단거동 예측에 관한 연구)

  • 김상우;이정윤
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.130-138
    • /
    • 2001
  • This paper presents on the shear behavior prediction of reinforced concrete beams using Transformation Angle Truss Model (TATM). The TATM can evaluate the stress-strain relationships for cracked concrete by transforming stresses and strains for principal plane into those over the crack surfaces. This proposed analytical method simplifies the Fixed Angle Softened Truss Model (FA-STM) and removes the limitation of applicability of the FA-STM. The shear.strength and strain of reinforced concrete beams are predicted by using the TATM. For the verification of proposed method, experimental results of reinforced concrete beams were compared with theoretical results by the TATM, FA-STM and Rotating Angle Softened Truss Model (RA-STM).

Characterization of In-plane Shear Behaviors of Woven Fabrics by Bias-extension and Trellis-frame Tests (편향 인장 및 트렐리스 시험에 의한 직물 복합재료의 면내 전단 물성 평가)

  • Lee, Won-Oh;Um, Moon-Kwang;Byun, Joon-Hyung;Cao, Jian
    • Composites Research
    • /
    • v.23 no.5
    • /
    • pp.8-14
    • /
    • 2010
  • Three types of glass woven fabrics (plain, balanced twill, and unbalanced twill) having various sample sizes and aspect ratios were tested using the bias-extension tests. Real-time deformation images, force, and displacement data were collected. For the bias-extension test, the shear angle of the fabrics from the equation based on the crosshead displacement and fabric size was compared with direct manual measurements of the warp and weft angles as well as the optical measurement software. To determine the shear force, an analytical equation was introduced considering the kinematics of the bias-extension test. The obtained shear behaviors were further compared with the results by the trellis-frame test. The optical measurement methods showed that the mathematical method was reasonable before the shear angle of the fabrics reaches $30^{\circ}$ in the bias-extension tests. Also, the bias-extension test gave consistent behaviors with the trellis-frame test only for isotropic and homogeneous fabrics such as balanced plain and twill weaves.

Experimental Study on the Shear Behavior of Reinforced Hooked-Steel-Fiver Concrete Beams (훅트강섬유보강 철근콘크리트보의 전단거동에 대한 실험적 연구)

  • 심종성;이차돈;김규선;오홍섭
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.5
    • /
    • pp.179-188
    • /
    • 1995
  • SFRC overcomes brittleness of concrete and has increases strength due to the action of confmement, crack arrestmg mechan~sm and pull out resistances of steel f~bers ~ n s ~ d e the concrete. These lead also to the increased strength and ductility under the shear stress. It has been reported that the secondary remforcement effect of steel fibers IS more pronounced In shear than flexure. Addition of hooked stee!, fibers into the cementitious materials enhanced shear resistance and consequently improves structural behavior and shear strength of Reinforced Hooked-Steel-Fiber Concrete Ream(RHSFCI3) under the shear forces. Experimental observations were made on the main parameters effecting structural behavior of RHSFCB in this study. The volume fractions of fibers, shear span to depth ratios, and spaclngs of stlrrups were taken into account as the mam parameters. Some eyuatlons reported in the literatures, regardmg the predict~ons of the shear strength of RHSFCB have been evaluated stdtlst~cdlly based on the tot a1 number of 95 test results on RHSFCB faded In shear on shear flexu~al mode.

A Study on the Effect of Normal Stress on the Joint Shear Behavior (절리면 전단거동에서의 법선응력 영향 고찰)

  • Cho, Taechin;Suk, Jaewook
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.203-211
    • /
    • 2013
  • Shear behavior of joint plane has been investigated considering the magnitude of normal stresses and initial surface roughness. Shear strength of joint plane has been measured by performing the multi-stage shear test in which applied normal stress level has been increased stepwise. Multi-stage shear test within the specified normal stress range has been repeated and two types of strength parameter variation have been observed: type 1 - both cohesion and friction angle decrease, type 2 - cohesion decrease and friction angle increase. Trends of strength parameter variation for the three rock types, gneiss, granite and shale, have been investigated and the influence of initial roughness of joint plane on the sequential shear strength change for the repeated multi-stage shear tests also has been analyzed.

Vane Shear Test on Nakdong River Sand (베인 전단시험기를 이용한 낙동강모래의 마찰각에 관한 연구)

  • Park, Sung-Sik;Zhou, An;Kim, Dong-Rak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.463-470
    • /
    • 2016
  • A vane shear test (VST) is a simple testing method for determining an undrained shear strength of cohesive soils by minimizing soil disturbance. In this study, the VST was used to determine a shear strength of sand. Dry Nakdong River sand was prepared for loose and dense conditions in a cell and then pressurized with 25, 50, 75 or 100 kPa from the surface of sand. A vane (5 cm in diameter and 10 cm in height) was rotated and a torque was measured within sand. When a torque moment by vane and friction resistance moment by sand is assumed to be equalized, a friction angle can be obtained. When a vane rotates within clay, a uniform undrained shear strength is assumed to be acting on cylindrical failure surface. On the other hand, when it is applied for sand, the failure shape can be assumed to be an octagonal or square column. The relationship between measured torque and resistant force along assumed failure shapes due to friction of sand was derived and the internal friction angle of sand was determined for loose and dense conditions. For the same soil condition, a series of direct shear test was carried out and compared with VST result. The friction angle from VST was between 24-42 degrees for loose sand and 33-53 degrees for dense sand. This is similar to those of direct shear tests.

The Effect of The Initial Phase Angles of The Large-Scale Coherent Structures in a Spatially Developing Viscous Shear Layer (공간적으로 발전하는 점성 전단층에서 Lage-Scale 구조의 초기 위상각의 효과)

  • 서태원;전운학
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.4
    • /
    • pp.1-8
    • /
    • 1994
  • 이 논문에서 우리는 발전하는 전단층의 2차원 Wave Mode에 대한 비선형 상호작용에 대한 문제를 다루었다. 총 위상각은 Wave Mode ij와 k$\ell$의 상응하는 에너지와 위상 상호작용을 조절한다. 그러므로 이 논문의 목적은 전단층에서 Lange-Scale 구조의 초기 위상각의 효과를 조사하고자 하는 것이다. 이 연구에서 우리는 Subharmonic의 존재는 전단층의 성장에 상당한 영향을 준다는 것을 알았고 Entrainment에서도 증가하는데 영향을 준다는 것을 알았다. 우리는 또한 Mean Flaw와 Fundamental의 다른 초기 위상각의 효과는 Subharmonic이 성장하는 먼 Downstream 영역에서 보여지기 시작한다는 것을 알았다.

  • PDF

Characteristics of Friction Angles between the Nak-dong River Sand and Construction Materials by Direct Shear Test (낙동강 모래와 건설재료간의 직접전단시험에 의한 마찰각 특성)

  • Kim, Young-Su;Kim, Dae-Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.105-112
    • /
    • 2009
  • In this study, a series of direct shear tests were performed to investigate the characteristics of friction angles for sands and interface friction angle between sands and construction materials with respect to different relative density of the Nak-dong River sands and shearing velocity. The result of the test shows that friction angles of sands are always higher than interface friction angle between sands and construction materials. As the shearing velocity get faster, the friction angles of sand became higher. With respect to the density of sand by reducing void ratio, friction angles increase linearly, and relevant equations were proposed to calculate the friction angle by changing void ratio and relative density of sand. The interface roughness of construction materials was also an important factor in interface friction angle.

Shear Tests Under Constant Normal Stiffness for Granite-concrete Interface (화강암 절단면과 콘크리트 부착면에 대한 일정강성도 전단시험)

  • 조천환;이명환;유한규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.5-12
    • /
    • 2004
  • The purpose of this paper is to make an understanding of fundamental mechanism of shear behaviour between rock and concrete interfaces in the pile socketed into granite. The interface of pile socketed in rock can be modeled in laboratory tests by resolving the axi-symmetric pile situation into the two dimensional situation under CNS(constant normal stiffness) direct shear condition. In this paper, the granite core samples were used to simulate the interface condition of piles socketed in granite in our country. The samples were prepared in the laboratory to simulate field condition, roughness(angle and height), stress boundary condition, and then tested by CNS direct shear tests. This paper describes shearing behaviour of socket piles into domestic granite through the analysis of CNS test results. It was found out that the peak shear strength increases with the angle of asperity and CNS value, and also the dilation increases with the angle of asperity but decreases with the CNS value.