DOI QR코드

DOI QR Code

Nonlinear Analysis of Shear Behavior on Pile-Sand Interface Using Ring Shear Tests

링전단시험을 이용한 말뚝 기초-사질지반 간 인터페이스 거동 분석

  • 정상섬 (연세대학교 건설환경공학과) ;
  • 정형서 ((주)건화) ;
  • ;
  • 김도현 (매사추세츠공과대학교 토목환경공학과)
  • Received : 2020.11.20
  • Accepted : 2021.04.06
  • Published : 2021.05.31

Abstract

In this study, the shear behavior between pile-sandy soil interface was quantified based on series of rigorous ring shear test results. Ring shearing test was carried out to observe the shear behavior prior to failure and behavior at residual state between most commonly used pile materials - steel and concrete - and Jumunjin sand. The test was set to clarify the shear behavior under various confinement conditions and soil densities. The test results were converted in to representative friction angles for various test materials. Additional numerical analysis was executed to validate the accuracy of the test results. Based on the test results and the numerical validation, it was found that due to the dilative and contractive nature of sand, its interface behavior can be categorized in to two different types : soils with higher densities tend to show peak shear stress and moves on to residual state, while on the other hand, soils with lower densities tend to show bilinear load-transfer curves along the interface. However, the relative density and the confining stress was found to affect the friction angle only in the small train range, and converges as it progresses to large deformation. This study established a large deformation analysis method which can successfully simulate and predict the large deformation behavior such as ring shear tests. Moreover, the friction angle derived from the ring shear test result and verified by numerical analysis can be applied to numerical analysis and actual design of various pile foundations.

본 연구에서는 링전단시험 결과를 이용하여 말뚝-사질지반 사이의 전단거동을 정량화하였다. 링전단시험은 가장 일반적인 말뚝재료 - 콘크리트와 강 - 와 대표적인 사질토인 주문진표준사를 대상으로 수행하였으며, 두 재료 사이의 전단거동을 항복 이전과 잔류전단거동을 중심으로 확인하고 분석하였다. 시험결과를 통하여 다양한 상재압과 상대밀도의 영향 또한 분석하여, 그에 따른 전단거동을 각 재료 별 대표적인 마찰각으로 정량화하였다. 더 나아가, 추가적인 대변형 수치해석을 통하여 시험결과를 검증하였다. 링전단시험 및 수치해석을 수행한 결과, 사질토의 전단 중 발생하는 팽창과 수축특성에 의하여 전단거동을 크게 두 가지로 구분할 수 있었다. 1) 상대밀도가 높은 시료일수록 두 재료 간 전단응력곡선은 첨두전단응력이 관찰된 후 잔류전단응력이 발현되는 개형을 나타내었고, 반면에 2) 상대밀도가 낮은 시료일수록 두 재료 간 전단응력곡선은 첨두전단응력의 발현 없이 바로 잔류전단응력이 발현되는 이중곡선 형태를 보였다. 상재압은 소변형 범위에서는 전단거동 형태와 마찰각에 영향을 주지만, 상대밀도와 마찬가지로 대변형 하에서는 유의미한 영향을 주지 않는 것으로 확인되었다. 본 연구는 리메싱을 통한 대변형 수치해석 기법을 정립하여 링전단시험과 같은 대변형 전단거동을 모사하고 예측할 수 있도록 하였을 뿐 만 아니라, 링전단시험을 통하여 도출되고 대변형 수치해석으로 검증된 말뚝 재료와 사질토 사이의 마찰각은 실제 기초 말뚝의 수치해석과 설계에 적용할 수 있도록 하였다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원을 통하여 지원된 건설기술연구사업 '케이블 교량 글로벌 경쟁력 강화를 위한 전주기 엔지니어링 가설공법 개발(20SCIPB119947-05)'과 정부(교육부) 재원, 한국연구재단의 기초연구사업(2018R1A6A1A08025348, 2020R1A6A3A03039747)의 지원을 받아 수행되었으며, 이에 감사드립니다.

References

  1. Barmpopoulos, I. H., Ho, T. Y. K., Jardine, R. J., and Minh, A. N. (2009), "The Large Displacement Shear Characteristics of Granular Media Against Concrete and Steel Interfaces", Proceedings of the Research Symposium on Characterization and Behavior of Interfaces, Atlanta, GA, pp.16-23.
  2. Bishop, A., Green, G., Garga, V., Anderssen, A., and Brown, J. (1971), "A New Ring Shear Apparatus and its Application to the Measurement of Residual Strength", Geotechnique, Vol.21, No.4, pp.273-328. https://doi.org/10.1680/geot.1971.21.4.273
  3. Bromhead, E. (1979), "A Simple Ring Shear Apparatus", Ground Engineering, Vol.12, No.5, pp.40-44.
  4. CUR (2001), Bearing capacity of steel pipe piles, Report 2001-8. Gouda, The Netherlands : Centre for Civil Engineering Research and Codes.
  5. Dassault Systems (2017), "ABAQUS CAE 2017 Manual".
  6. Han, Y. C., Lim, H. S., and Jeong, S. S. (2014), "The Strength and Deformation Characteristics of Jumunjin Sand under Low Confining Stresses", Journal of the Korean Geotechnical Society, Vol.30, No.2, pp.33-42. https://doi.org/10.7843/kgs.2014.30.2.33
  7. Hvorslev, M. (1939), "Torsion Ring Shear Tests and Their Place in the Determination of the Shearing Resistance of Soils", Proceedings, ASTM Symposium of Shear Testing of Soils, Vol.39, pp.999-1022.
  8. Ho, T., Jardine, R., and Anh-Minh, N. (2011), "Large-deformation Interface between Steel and Granular Media", Geotechnique, Vol.61, No.3, pp.221-234. https://doi.org/10.1680/geot.8.P.086
  9. Jeong, S., Ahn, S., and Seol, H. (2010), "Shear Load Transfer Characteristics of Drilled Shafts in Rocks", Rock Mechanics and Rock Engineering, Vol.43, No.1, pp.41-54. https://doi.org/10.1007/s00603-009-0026-4
  10. Jeong, S., Lee, J., and Lee, C. (2004), "Slip Effect of the Pile-soil Interface on Dragload", Computers and Geotechnics, Vol.31, pp. 115-126. https://doi.org/10.1016/j.compgeo.2004.01.009
  11. Jung, G. J., Kim, D. H., Lee, C. J., and Jeong, S. S. (2017), "Analysis of Skin Friction behavior in Prebored and Precast Pile based on Field Loading Test", Journal of the Korean Geotechnical Society, Vol.33, No.1, pp.31-38. https://doi.org/10.7843/kgs.2017.33.1.31
  12. Kim, D. H. (2018), "Proposed Shaft Resistance of Prebored Precast Pile Using Field Loading Test", Doctoral dissertation, Yonsei University, Seoul, Korea.
  13. Kim, D. H., Park, J. J., Chang, Y. C., and Jeong, S. S. (2018), "Proposed Shear Load-transfer Curves for Prebored and Precast Piles", Journal of the Korean Geotechnical Society, Vol.34, No.12, pp.43-58. https://doi.org/10.7843/KGS.2018.34.12.43
  14. Kim, D., Jeong, S., and Park, J. (2020), "Analysis on Shaft Resistance of the Steel Pipe Prebored and Precast Piles based on Field Loadtransfer Curves and Finite Element Method", Soils and Foundations, Vol.60, pp.478-495. https://doi.org/10.1016/j.sandf.2020.03.011
  15. Korea Expressway Cooperation Research Institute (1997), Evaluation of bearing capacity of rock socketed piers (III)", Research report.
  16. Lee, K. L. (1965), "Triaxial compressive strength of saturated sand underseismic loading conditions", Ph.D. thesis, University of California, Berkeley, CA.
  17. Lings, M. and Dietz, M. (2005), "The Peak Strength of Sand-steel Interfaces and the Role of Dilation", Soils and foundations, Vol. 45, No.6, pp.1-14. https://doi.org/10.3208/sandf.45.1
  18. Orazalin, Z. and Whittle, A. (2018), "Realistic numerical simulations of cone penetration with advanced soil models", Cone Penetration Testing 2018, Delft University of Technology, The Netherlands, pp.483-489.
  19. Park, Y., Park, S., and Kim, N. ( 2008), "Drilled Shafts Design Method Designed by the Limit State Design Method", Yooshin Technical Report, Vol.13, pp.129-143.
  20. Randolph, M. and Worth, C. (1981), "Application of the Failure State in Undrained Simple Shear to the Shaft Capacity of Driven Piles", Geotechnique, Vol.31, No.1, pp.143-157. https://doi.org/10.1680/geot.1981.31.1.143
  21. Reddy, E., Chapman, D., and Sastry, V. (2000), "Direct Shear Interface Test for Shaft Capacity of Piles in Sand", Geotechnical Testing Journal, Vol.23, No.2, pp.199-205. https://doi.org/10.1520/GTJ11044J
  22. Sassa, K., Fukuoka, H., Wang, G., and Ishikawa, N. (2004), "Undrained Dynamic-loading Ring Shear Apparatus and its Application to Landslide Dynamics", Landslides, Vol.1, pp.7-19. https://doi.org/10.1007/s10346-003-0004-y
  23. Seol, H., Jeong, S., and Cho, S. (2009), "Analytical Method for Load-transfer Characteristics of Rock-socketed Drilled Shafts", ASCE's Journal of Geotechnical and Geoenvironmental Engineering, Vol.135, No.6, pp.778-789. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:6(778)
  24. Tika-Vassilikos, T. (1991), "Clay-on-Steel Ring Shear Tests and Their Implications for Displacement Piles", Geotechnical Testing Journal, Vol.14, No.4, pp.457-463. https://doi.org/10.1520/GTJ10214J
  25. Timothy, D. and Vettel, J. (1992), "Bromhead Ring Shear Test Procedure", Geotechnical Testing Journal, Vol.15, No.1, pp.24-32. https://doi.org/10.1520/GTJ10221J
  26. Tiwari, B., Ajmera, B., and Kaya, G. (2010), "Shear Strength Reduction at Soil Structure Interface", GeoFlorida 2010 Advances in Analysis, Modeling and Design, pp.1747-1756.
  27. Uesugi, M., Kishida, H., and Uchikawa, Y. (1990), "Friction between Dry Sand and Concrete under Monotonic and Repeated Loading", Soils and Foundations, Vol.30, No.1, pp.115-128. https://doi.org/10.3208/sandf1972.30.115
  28. Willie Geotechnik (2015), "Dynamic Ring shear testing Device".