• Title/Summary/Keyword: 전기 삼투

Search Result 124, Processing Time 0.029 seconds

A Study on the curvature Effect of microchannel within Electroosmotic Flow (전기삼투 유동 중 마이크로 채널 내 곡률 변화에 따른 혼합특성에 대한 연구)

  • Heo, Hyeung-Seok;Suh, Yong-Kweon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.107-110
    • /
    • 2005
  • In this study a newly designed and electro-osmotic micro-mixer is proposed. This design is comprised of a channel and metal electrodes attached in the local side wall surface, To investigate the flow patterns a numerical method is employed. To obtain the flow patterns numerical computation are performed by using a commercial code, CFD-ACE. The fluid-flow solutions are then cast into studying the characteristics of stirring with aid the Mixing index. Focus is given the effect on the electro osmotic flow characteristics under the curvature variation in the microchannel with the local of the electric field

  • PDF

A Numerical Model for Non-Equilibrium Electroosmotic Flow in Micro- and Nanochannels (마이크로/나노 채널에서의 비평형 전기삼투 유동 모사를 위한 수치모델)

  • Kwak Ho Sang;Jr. Ernest. F. Hasselbrink,
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.161-164
    • /
    • 2004
  • A finite volume numerical model is developed for simulating non-equilibrium electroosmotic flow in micro- and nanochannels. The Guoy-Chapman model is adopted to compute the flow and electric potential. The Nernst-Planck equation is employed to trace unsteady transports of ionic species, i.e., time-dependent net charge density. A new set of boundary conditions based on surface charge density are designed rather than using the conventionally-employed zeta potential. A few issues for an efficient computation of electroosmotic flows are discussed. Representative computational examples are given to illustrate the robustness of the numerical model.

  • PDF

A Study on PTV analysis of AC Electroosmotic Flows in the Microchannel with Coplanar electrodes (마이크로 채널 내 교류 전기 삼투 유동에 대한 PTV해석)

  • Heo, Hyeung-Seok;Kang, Sang-Mo;Suh, Yong-Kweon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.113-116
    • /
    • 2006
  • AC-electroosmosis is one of the electrokinetic forces leading to phenomena peculiar in the microfluidics. This paper shows particle deformation in the microchannel with rectangular electrodes on the bottom wall for the AC-electroosmotic flows. We make a PDMS microchannnel with ITO electrodes To measure velocity distributions of the particles we used a three-dimensional particle tracking velocimetry (micro-PTV) technique this method is Particle tracking by interpolation the diffraction pattern ring diameter variations with the defocusing distances of base particle locations. we induce a function of frequency at the electrode. We find the velocity of particles is the most at the edge of the electrodes and Particles move to side wall or center of the channel for the bottom and middle.

  • PDF

AC-Electroosmotic Flows-Fundamental Mechanism and Kinematic Aspects (교류 전기삼투유동 - 근본 메커니즘과 운동학적 양상)

  • Suh, Yonk-Kweon
    • Journal of the Korean Society of Visualization
    • /
    • v.6 no.1
    • /
    • pp.3-16
    • /
    • 2008
  • Controlling fluid flows in micro scales is a non-trivial issue among those who are involved in designing lab-on-chips. Pumping and mixing by using electrokinetic principles has been popular in that the method requires a few parts and it is easy to control. This paper explains the basic mechanism of the electroosmotic flows caused by AC together with presenting some numerical results. In particular, the fundamental, physical idea involved in the mechanism will be illustrated in terms of the kinematic aspect. Since the electroosmotic flows are mainly driven by the motion of ions, we also demonstrate the ion motions by using the numerical-visualization method.

Effect of Electro-Osmosis Method on Marine Clay with Preloading (선행하중이 작용하는 해성점토지반에 전기삼투공법의 효과)

  • Kang, Hongsig;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.2
    • /
    • pp.53-58
    • /
    • 2015
  • The Pre-loading method has been widely used for the soft ground stabilization but long construction times and the transport of large quantities of fill material are required. To shorten the construction periods, the vertical drain method is generally applied simultaneously. But the high costs of the fill materials along with environmental damages remain as the main difficulties to apply this method. Therefore, a complimentary way to reduce both the height of the embankment and the consolidation time is needed. In this study, the electro-osmosis method, which is able to shorten the consolidation time and minimize the damage of the environment, was performed with a model test. The results show that as the voltage increases the consolidation settlements, consolidation drainage and shear strength also increase while the water content decreases.

Characteristics on Electroosmosis Ground Improvement Using Nano-geosynthetics (나노섬유를 이용한 동전기 지반개량에 관한 특성)

  • Ahn, Kwangkuk;Jeong, Kusic;Lee, JunDae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.4
    • /
    • pp.59-63
    • /
    • 2009
  • In this study, Nano-geosynthetics with electroosmosis method was used and tried to verify the possibility of usage for soft ground improvement. Electroosmosis tests were performed with increasing the voltage level and changing distance between electrodes. The electrokinetic cell was assembled and a Nano-geosynthetics was inserted into the plastic drain board. And electroosmosis was applied to the disturbed kaolin clay. In order to study the effects of ground improvement, ground settlement, water content, collected pore water and shear strength were compared and analyzed with non-applied kaolin clay. Also, the electroosmosis tests were performed with changing the distance between electrodes and the voltage size. As a results of changing the distance and voltage between electrodes, the more voltage size was increased, the more the settlement of ground, shear strength and collected pore water were increased. As the distance between electrodes were increased, the settlement of ground, shear strength, water content and collected pore water were decreased. Finally, Nano-geosynthetics as a material of electrode have the sufficient potential to improve soft ground.

  • PDF

Separation Technologies for the Removal of Nitrate-Nitrogen from Aqueous Solution (수용액으로부터 질산성질소 제거를 위한 기술)

  • Seo, Yang Gon;Jung, Se Yeong
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.1-14
    • /
    • 2017
  • At high nitrate concentrations, water must be treated to meet regulated concentrations because it results in threat to human health and eutrophication of natural water. However, it is almost impossible to remove nitrate by conventional water treatment methods such as coagulation, filtration and precipitation, due to its high water solubility. Therefore, other technologies including adsorption, ion exchange, reverse osmosis, denitrification, and electrodialysis are required to effectively remove nitrate. Each of these technologies has their own strengths and drawbacks and their feasibility is weighted against factors such as cost, water quality improvement, residuals handling, and pre-treatment requirements. An adsorption technique is the most popular and common process because of its cost effectiveness, ease of operation, and simplicity of design. Surface modifications of adsorbents have been enhanced their adsorption of nitrate. The nitrate-selective membrane process of electrodialysis reversal and reverse osmosis have proven over time and at many locations to be highly effective in removing nitrate contaminating problems in aqueous solutions. Both electrodiaysis and reverse osmosis methods generate highly concentrated wastes and need careful consideration with respect to disposal.

Transport of Water through Polymer Membrane in Proton Exchange Membrane Fuel Cells (고분자전해질 연료전지에서 고분자막을 통한 물의 이동)

  • Lee, Daewoong;Hwang, Byungchan;Lim, Daehyun;Chung, Hoi-Bum;You, Seung-Eul;Ku, Young-Mo;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.338-343
    • /
    • 2019
  • The water transport and water content of the electrolyte membrane greatly affect the performance of the membrane in PEMFC(Proton Exchange Membrane Fuel Cell). In this study, the parameters (electroosmotic coefficient, water diffusion coefficient) of polymer membranes for water transport were measured by a simple method, and water flux and ion conductivity were simulated by using a model equation. One dimensional steady state model equation was constructed by using only the electro-osmosis and diffusion as the driving force of water transport. The governing equations were simulated with MATLAB. The electro-osmotic coefficient of $144{\mu}m$ thick polymer membranes was measured in hydrogen pumping cell, the value was 1.11. The water diffusion coefficient was expressed as a function of relative humidity and the activation energy for water diffusion was $2,889kJ/mol{\cdot}K$. The water flux and ion conductivity results simulated by applying these coefficients showed good agreement with the experimental data.

Comparison of Electro-Osmotic Pumps with Two Different Types of Porous Glass Frits (두 종류의 다공성 유리막을 이용한 전기삼투 펌프의 비교 연구)

  • Kwon, Kil-Sung;Park, Chul-Woo;Kim, Dae-Joong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.379-383
    • /
    • 2011
  • Electro-osmotic pumps were fabricated by using two types of porous glass frits. The performance of these pumps was characterized in terms of maximum flow rate, current, and pressure using deionized water and 1 mM sodium tertraborate decahydrate buffer. Maximum flow rate and current when ROBU porous glass frits were used were higher than those when DURAN porous glass frits were used because of the high porosity of the ROBU glass frits. However, the maximum pressure when ROBU glass frits were used was similar to that when DURAN glass frits were used. The therrmodynamic efficiency of a pump with ROBU porous glass frits is approximately twice that of a pump with DURAN porous glass frits. Further, the maximum flow rate at maximum current in the case of ROBU porous glass frits is high. However, it is lower than the maximum pressure at maximum current in the case of DURAN porous glass frits. Further, in this study, we also verified the effectiveness of ROBU glass frits when high flow rate is required and of DURAN glass frits when a high pressure is required.