• Title/Summary/Keyword: 전기체

Search Result 3,399, Processing Time 0.032 seconds

The study on the effect of fracture zone and its orientation on the behavior of shield TBM cable tunnel (단층파쇄대 규모 및 조우 조건에 따른 전력구 쉴드 TBM 터널의 거동 특성 분석)

  • Cho, Won-Sub;Song, Ki-Il;Kim, Kyoung-Yul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.4
    • /
    • pp.403-415
    • /
    • 2014
  • Recently, the temperature rise in the summer due to climate change, power usage is increasing rapidly. As a result, power generation facilities have been newly completed and the need for ultra-high-voltage transmission line for power transmission of electricity to the urban area has increased. The mechanized tunnelling method using a shield TBM have an advantage that it can minimize vibrations transmitted to the ground and ground subsidence as compared with the conventional tunnelling method. Despite the popularity of shield TBM for cable tunnel construction, study on the mechanical behavior of cable tunnel driven by shield TBM is insufficient. Thus, in this study, the effect of fractured zone ahead of tunnel face on the mechanical behavior of the shield TBM cable tunnel is investigated. In addition, it is intended to compare the behavior characteristics of the fractured zone with continuous model and applying the interface elements. Tunnelling with shield TBM is simulated using 3D FEM. According to the change of the direction and magnitude of the fractured zone, Sectional forces such as axial force, shear force and bending moment are monitored and vertical displacement at the ground surface is measured. Based on the stability analysis with the results obtained from the numerical analysis, it is possible to predict fractured zone ahead of the shield TBM and ensure the stability of the tunnel structure.

Development of a Pacemaker with a Ventricular Assist Device for End-Stage Heart Failure Patients (말기 심질환 환자를 위한 심실보조장치용 심박조율기의 개발)

  • Kim, Yoo-Seok;Park, Sung-Min;Choi, Seong-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1205-1211
    • /
    • 2011
  • In this paper, we developed a pacemaker that can increase the efficacy of a left ventricular assist device (LVAD) and increase the survival rate for patients suffering end-stage heart failure. Because LVAD patients can experience arrhythmia, the pacemaker incorporated into the LVAD has the important role of sustaining sufficient blood circulation during arrhythmia. The electrode of the pacemaker is located at the apex of the left ventricle, where the VAD's inlet cannula is connected. This is efficient placement, in that the electrode can transmit electrical stimulation directly to the Purkinje fibers of the myocardium. The pacemaker can change the stimulation rate from 0 bpm to 191.4 bpm when a button is pressed on the external control module, and the pacemaker normally stimulates the heart at 60 bpm with 0.25 J of energy. We performed animal experiments to evaluate the performance and reliability of the combination of the LVAD and pacemaker. At pacemaker stimulation rates of 86.4 bpm, 100.2 bpm, 126.6 bpm, we recorded the ECGs, aortic pressures, and flow rates to analyze the heart loads.

Polyether Ester by Rubber Content and Rubber According to the Type of Dynamic Vulcanized Properties (TPEE) (폴리에스터계 동적가교물의 고무함량 및 고무종류에 따른 물성)

  • Yun, Ju-Ho;Yun, Jung-Hwan;Ha, Seong-Mun;Kim, Il;Sim, Sang-Eun
    • Elastomers and Composites
    • /
    • v.48 no.1
    • /
    • pp.67-75
    • /
    • 2013
  • E-TPE (Engineering Thermoplastic Polyether Ester) was Ester Elastomer with functional groups as recycling and fast processability. In addition, if the car's lightweight enough to highlight eco-friendly materials that help to improve fuel economy has become. Have all the attributes of the rubber and engineering plastics E-TPE the available temperature area is spacious, heat resistance and oil resistance is excellent but getting attention as a new material in the field of auto parts in the field of electrical and electronic domestic depends entirely on imports by the lack of core technology and has been research and development is urgently needed. In this study, the hard segments, polyester (TPEE) as the base soft elastomers of the segments Ethylen-prophylene-Copolymer and CSM (Choloro sulphonated polyethylene Rubber), VAMAC (Ethylene Acrylic Rubber), NBR (Acrylonitrin Butadiene Rubber), 1, 3-Phenylene-bisoxazoline is dealing with Dynamic Vulcanized by content and added rubber properties, thermal variation observed. As a result, the properties of the dynamic vulcanization with NBR compared to other rubber heat resistance and oil resistance is on the increase.

Nano-scale Information Materials Using Organic/Inorganic Templates (유기/무기 나노 템플레이트를 이용한 나노 정보소재 합성 연구)

  • Lee, Jeon-Kook;Jeung, Won-Young
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.4
    • /
    • pp.149-161
    • /
    • 2004
  • The fusion of nano technology and information technology is essential to sustain the present growth rate and to induce new industry in this ever-growing information age. Considering Korean industry whose competitiveness lies heavily on information related technologies, this field will be inevitable for future. Nano materials can be described as novel materials whose size of elemental structure has been engineered at the nanometer scale. Materials in the nanometer size range exhibit fundamentally new behavior, as their size falls below the critical length scale associated with any given property. " Bottom-up' techniques involve manipulating individual atoms and molecules. Bottom-up process usually implies controlled or directed self assembly of atoms and molecules into nano structures. It resembles more closely the processes of biology and chemistry, where atoms and molecules come together to create structures such as crystals or living cells. Nano scale sensors are included in the electronics area since the diverse sensing mechanisms are often housed on a semiconductor substrate and usually give rise to an electronic signal. The application of nano technology to the chemical sensors should allow improvements in functionality such as gas sensing. In this presentation, we will discuss about the nano scale information materials and devices fabricated by using the organic/inorganic nano templates.

Evaluation of TiN-Zr Hydrogen Permeation Membrane by MLCA (Material Life Cycle Assessment) (물질전과정평가(MLCA)를 통한 TiN-Zr 수소분리막의 환경성 평가)

  • Kim, Min-Gyeom;Son, Jong-Tae;Hong, Tae-Whan
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.9-14
    • /
    • 2018
  • In this study, Material life cycle evaluation was performed to analyze the environmental impact characteristics of TiN-Zr membrane manufacturing process. The software of MLCA was Gabi. Through this, environmental impact assessment was performed for each process. Transition metal nitrides have been researched extensively because of their properties. Among these, TiN has the most attention. TiN is a ceramic materials which possess the good combination of physical and chemical properties, such as high melting point, high hardness, and relatively low specific gravity, high wear resistance and high corrosion resistance. With these properties, TiN plays an important role in functional materials for application in separation hydrogen from fossil fuel. Precursor TiN was synthesized by sol-gel method and zirconium was coated by ball mill method. The metallurgical, physical and thermodynamic characteristics of the membranes were analyzed by using Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDS), X-ray Diffraction (XRD), Thermo Gravimetry/Differential Thermal Analysis (TG/DTA), Brunauer, Emmett, Teller (BET) and Gas Chromatograph System (GP). As a result of characterization and normalization, environmental impacts were 94% in MAETP (Marine Aquatic Ecotoxicity), 2% FAETP (Freshwater Aquatic Ecotoxicity), 2% HTP (Human Toxicity Potential). TiN fabrication process appears to have a direct or indirect impact on the human body. It is believed that the greatest impact that HTP can have on human is the carcinogenic properties. This shows that electricity use has a great influence on ecosystem impact. TiN-Zr was analyzed in Eco-Indicator '99 (EI99) and CML 2001 methodology.

Reaction of the Fe(II) Macrocyclic Complexes with Dioxygen : Preparation of New Unsaturated Ring Systems by Oxidative Dehydrogenation Reactions of Fe(II) Macrocyclic Ligands (이가철 거대고리 리간드의 착화합물과 산소 분자간의 반응 : 이가철 거대고리 리간드 착화합물의 산화성 탈수소 반응에 의한 새로운 불포화 고리계의 합성)

  • Myunghyun Paik;Shin-Geol Kang;Kyu Whan Woo
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.384-392
    • /
    • 1984
  • Reaction of the Fe(II) complex of a fully saturated tetradentate macrocyclic ligand [Fe([14]aneN$_4)(CH_3CN)_2]^{2+}$, where [14]ane$N_4$ represents 1,4,8,11-tetraazacyclotetradecane, with $O_2$ has been investigated in acetonitrile solutions. [Fe([14]aneN$_4)(CH_3CN)_2]^{2+}$ reacts with oxygen to yield low spin Fe(III) species, [Fe([14]aneN$_4)(CH_3CN)_2]^{3+}$, which undergoes metal ion assisted oxidative dehydrogenation of the macrocyclic ligand to produce low spin Fe(II) complex, [Fe([14]tetraeneN$_4)(CH_3CN)_2]^{2+}$. The macrocyclic ligand in [Fe([14]tetraeneN$_4)(CH_3CN)_2]^{2+}$ is highly unsaturated and its double bonds are conjugated. [Fe([14]dieneN$_4)(CH_3CN)_2]^{2+}$ and [Fe([14]dieneN$_4)(CH_3CN)_2]^{3+}$ are isolated as the intermediates of the reaction. The Fe(II) complexes involved in this oxidative dehydrogenation reaction react with carbon monoxide to give respective carbon monoxide derivatives, [FeL$(CH_3CN)(CO)]^{2+}$ (where L = macrocyclic ligand). The values of $v_{CO}$ of [FeL$(CH_3CN)(CO)]^{2+}$, and the electrochemical oxidation potentials of Fe(II) ${\to}$ Fe(III) and the qualitative stability toward air-oxidation for [FeL(CH$_3CN_2)^{2+}$ increase as the degree of unsaturation of the macrocyclic ligands increase.

  • PDF

Single Channel Analysis of Xenopus Connexin 38 Hemichannel (제노푸스 Cx38 세포막채널의 단일채널분석)

  • Cheon, Mi-Saek;Oh, Seung-Hoon
    • Journal of Life Science
    • /
    • v.17 no.11
    • /
    • pp.1517-1522
    • /
    • 2007
  • Gap junction channels formed by two adjacent cells allow the passage of small molecules up to ${\sim}\;1\;kDa$ between them. Hemichannel (connexon or half of gap junction) also behaves as a membrane channel like sodium or potassium channels in a single cell membrane. Among 26 types of connexin (Cx), $Cx32^*43E1$ (a chimera in which the first extracellular loop of Cx32 has been replaced with that of Cx43), Cx38, Cx46, and Cx50 form functional hemichannels as well as gap junction channels. Although it is known that Xenopus oocytes express endogenous connexin 38 (Cx38), its biophysical characteristics at single channel level are poorly understood. In this study, we performed single channel recordings from single Xenopus oocytes to acquire the biophysical properties of Cx38 including voltage-dependent gating and permeation (conductance and selectivity). The voltage-dependent fast and slow gatings of Cx38 hemichannel are distinct. Fast gating events occur at positive potentials and their open probabilities are low. In contrast, slow gatings dominate at negative potentials with high open probabilites. Based on hi-ionic experiments, Cx38 hemichannel is anion-selective. It will be interesting to test whether charged amino acid residues in the amino terminus of Cx38 are responsible for voltage gatings and permeation.

Toxicity Reduction and Improvement of Anticancer Activities from Rhodiola sachalinensis A. Bor by Ultra High Pressure Extracts Process (초고압 공정에 의한 홍경천의 독성 감소 및 항암활성 증진)

  • Kim, Cheol-Hee;Kwon, Min-Chul;Qadir, Syed Abdul;Hwang, Baik;Nam, Jong-Hyeon;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.6
    • /
    • pp.411-416
    • /
    • 2007
  • This study was performed to investigate the reduction of toxicity and improvement of anticancer activities from R. sachalinensis by ultra high pressure extracts process. The cytotoxicity on human kidney cell (HEK293) and human lung cell (HEL299) was showed below 20.4% and 21.6% as compare to normal extracts in adding 1.0 $mg/m{\ell}$ concentration. This showed that toxic materials through ultra high pressure processing is broken or degraded. Because bond such as hydrogen bond, electrostatic bond, Van der waals bond, the hydrophobic bond, can be broken by high pressure. The anticancer activity was also increased in over 7% by high pressure processing in A549, AGS, MCF-7 and Hep3B cells. The result showed that extraction by high pressure have low cytotoxicity and high anticancer activity. So, the high pressure extraction technology can play an important role in eruption of new material with high biological activity.

Properties of ZnS:Cu,Cl Thick Film Electroluminescent Devices by Screen Printing Method (스크린인쇄법에 의한 ZnS:Cu,Cl 후막 전계발광소자의 특성)

  • No, Jun-Seo;Yu, Su-Ho;Jang, Ho-Jeong
    • Korean Journal of Materials Research
    • /
    • v.11 no.6
    • /
    • pp.448-452
    • /
    • 2001
  • The ZnS:Cu,Cl thick film electroluminescent devices with the stacking type(separated with phosphors and insulator layers) and the composite type (mixed with phosphor and insulator materials) emission layers were fabricated on ITO/glass substrates by the screen printing methods. The opical and electrical properties were investigated as fundations of applied voltages and frequencies. In the stacking type, the luminance was about 58 cd/$\m^2$ at the applied voltage of 400Hz, 200V and increased to 420 cd/$\m^2$ with increasing the frequency to 30Hz. For the composite type devices, the threshold voltage was 45V and the maximum luminance was 670 cd/$\m^2$ at the driving condition of 200V, 30Hz. The value of luminance of the composite type device showed 1.5 times higher than that of stacking type device. The main emission peak was 512 nm of bluish-green color at 1Hz frequency below and shifted to 452 nm in the driving frequency over 5Hz showing the blue omission color. There were no distinct differences of the main emission peaks and color coordinate for both samples.

  • PDF

Variations in the Properties of LSGM System Electrolyte with Sr and Mg Addition and Sintering Conditions (Sr과 Mg 첨가량 및 소결조건에 따른 LSGM계 전해질의 특성 변화)

  • Lee, Mi-Jai;Park, Sang-Sun;Choi, Byung-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.4
    • /
    • pp.352-358
    • /
    • 2002
  • The variations of the properties of Sr and Mg added $LaGaO_3$ system electrolyte with the amount of the additive and the sintering condition were studied. Main phase was (La$_{1-x}Sr_x)(Ga_{1-y}Mg_y)O_{3-\delta}$ phase for each compositions and the single phases $(La_{0.85}Sr_{0.15})(Ga_{0.85}Mg_{0.15})O_{3-\delta},(La_{0.85}Sr_{0.15})(Ga_{0.8}Mg_{0.2})O_{3-\delta}$ and $(La_{0.8}Sr_{0.2})(Ga_{0.8}Mg_{0.2})O{3-\delta}$ were obtained with the decrease in the sintering temperature and Mg addition. Thermal expansion coefficient of the $(La_{0.8}Sr_{0.2})(Ga_{0.8}Mg_{0.2})O_{3-\delta}$ decreased with the increase in the sintering temperature. Electric conductivity of electrolyte sintered at $1500^{circ}C$ for 1h was 0.14 S/cm at $800^{circ}C$ with 1 mA.