• Title/Summary/Keyword: 전기차 산업

Search Result 387, Processing Time 0.021 seconds

A Review on Solution Plans for Preventing Environmental Contamination as the Trend Changes of Cryptocurrency (암호화폐의 트랜드 변화에 따른 환경오염 방지 해결방안에 대한 고찰)

  • Kim, Jeong-hun;Song, Sae-hee;Ko, Lim-hwan;Nam, Hak-hyun;Jang, Jae-hyuck;Jung, Hoi-yun;Choi, Hyuck-jae
    • Journal of Venture Innovation
    • /
    • v.5 no.1
    • /
    • pp.91-106
    • /
    • 2022
  • Cryptocurrency, stood out the sharp cost rising of Bitcoin has been spotlighted by means of the solution for stagflation because it is decentralized with an existing currency differently. Especially getting into 4th industrial revolution, technologies using block chain and internet of things have been used in the many fields, and the power of influence is also widespread. Nevertheless like a remark of Elon Musk of Tesla CEO, the problems of environmental contamination for cryptocurrency have been pointed out continuously and the most representative of them is an enormous electric usage as the use of fossil fuels. Also the amount generated of carbon dioxide result in the acceleration of global warming mainly based on the climate changes of earth if the existing mining method is continued. On the other hand, review researches have been conducted restrictively as the connection with environmental contamination as the mining of cryptocurrency. In this study, it intended to review problems for environmental contamination as the diversification of ecological system of cryptocurrency concretely. Upon investigation existing prior documents on the putting recent data first, the mining of cryptocurrency has affected on the environmental contamination conflicting with carbon neutrality as increasement of the electric usage and electronic wastes. And POS method without the mining process appeared, but it had a demerit collapsing a decentralization and then we met turning point on appearing various environmental-friendly cryptocurrency. Finally the appearance of cryptocurrency using new renewable energy acted on the opportunity of the usage maximization of energy storage apparatus and the birth of national government intervention. Based on these results, we mention clearly that hereafter cryptocurrency will regress if not go abreast the value of currency as well as environmental approach.

The Impact of Social Capital and Laboratory Startup Team Diversity on Startup Performance Based on a Network Perspective: Focusing on the I-Corps Program (네트워크 관점에 기반한 사회적 자본 및 실험실 창업팀 다양성이창업 성과에 미치는 영향: I-Corps program을 중심으로)

  • Lee, Jai Ho;Sohn, Youngwoo;Han, Jung Wha;Lee, Sang-Myung
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.6
    • /
    • pp.173-189
    • /
    • 2023
  • As supreme technologies continue to be developed, industries such as artificial intelligence, biotechnology, robots, aerospace, electric vehicles, and solar energy are created, and the macro business environment is rapidly changing. Due to these large-scale changes and increased complexity, it is necessary to pay attention to the effect of social capital, which can create new value by utilizing capital increasing the importance of relationships rather than technology or asset ownership itself at the level of start-up strategy. Social capital is a concept first proposed by Hanifan in 1916, and refers to the overall sum of capabilities or resources that are latent or available for use in mutual, continuous, organic relationships or accumulated human relationship networks between individuals or social members. In addition, the diversity of start-up teams with diverse backgrounds, characteristics, and capabilities, rather than one exceptional founder, has been emphasized. Founding team diversity refers to the diversity of in-depth factors such as demographic factors, beliefs, and values of the founding team. In addition, changes in the macro environment are emphasizing the importance of technology start-ups and laboratory start-ups that lead industrial innovation and create the nation's core growth engines. This study focused on the I-Corps' program. I-Corps, which means innovation corps, is a laboratory startup program launched by the National Research Foundation (NSF) in 2011 to encourage entrepreneurship and commercialization of research results. It focuses on forming a startup team involving professors, researchers and market discovery activities. Taking these characteristics into account, this study empirically verified the impact of social capital from a network perspective and founding team diversity on I-Corps start-up performance. As a result of the analysis, the educational diversity of the founding team had a negative (-) effect on the financial performance of the founding team. On the other side, the gender diversity and the cognitive dimension of social capital had a positive (+) effect on the financial performance of the founding team. This study is expected to provide more useful theoretical and practical implications regarding the diversity, social capital, and performance interpretation of the I-Corps Lab startup team.

  • PDF

Nanoscale Pattern Formation of Li2CO3 for Lithium-Ion Battery Anode Material by Pattern Transfer Printing (패턴전사 프린팅을 활용한 리튬이온 배터리 양극 기초소재 Li2CO3의 나노스케일 패턴화 방법)

  • Kang, Young Lim;Park, Tae Wan;Park, Eun-Soo;Lee, Junghoon;Wang, Jei-Pil;Park, Woon Ik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.83-89
    • /
    • 2020
  • For the past few decades, as part of efforts to protect the environment where fossil fuels, which have been a key energy resource for mankind, are becoming increasingly depleted and pollution due to industrial development, ecofriendly secondary batteries, hydrogen generating energy devices, energy storage systems, and many other new energy technologies are being developed. Among them, the lithium-ion battery (LIB) is considered to be a next-generation energy device suitable for application as a large-capacity battery and capable of industrial application due to its high energy density and long lifespan. However, considering the growing battery market such as eco-friendly electric vehicles and drones, it is expected that a large amount of battery waste will spill out from some point due to the end of life. In order to prepare for this situation, development of a process for recovering lithium and various valuable metals from waste batteries is required, and at the same time, a plan to recycle them is socially required. In this study, we introduce a nanoscale pattern transfer printing (NTP) process of Li2CO3, a representative anode material for lithium ion batteries, one of the strategic materials for recycling waste batteries. First, Li2CO3 powder was formed by pressing in a vacuum, and a 3-inch sputter target for very pure Li2CO3 thin film deposition was successfully produced through high-temperature sintering. The target was mounted on a sputtering device, and a well-ordered Li2CO3 line pattern with a width of 250 nm was successfully obtained on the Si substrate using the NTP process. In addition, based on the nTP method, the periodic Li2CO3 line patterns were formed on the surfaces of metal, glass, flexible polymer substrates, and even curved goggles. These results are expected to be applied to the thin films of various functional materials used in battery devices in the future, and is also expected to be particularly helpful in improving the performance of lithium-ion battery devices on various substrates.

Application of Environmental Friendly Bio-adsorbent based on a Plant Root for Copper Recovery Compared to the Synthetic Resin (구리 회수를 위한 식물뿌리 기반 친환경 바이오 흡착제의 적용 - 합성수지와의 비교)

  • Bawkar, Shilpa K.;Jha, Manis K.;Choubey, Pankaj K.;Parween, Rukshana;Panda, Rekha;Singh, Pramod K.;Lee, Jae-chun
    • Resources Recycling
    • /
    • v.31 no.4
    • /
    • pp.56-65
    • /
    • 2022
  • Copper is one of the non-ferrous metals used in the electrical/electronic manufacturing industries due to its superior properties particularly the high conductivity and less resistivity. The effluent generated from the surface finishing process of these industries contains higher copper content which gets discharged in to water bodies directly or indirectly. This causes severe environmental pollution and also results in loss of an important valuable metal. To overcome this issue, continuous R & D activities are going on across the globe in adsorption area with the purpose of finding an efficient, low cost and ecofriendly adsorbent. In view of the above, present investigation was made to compare the performance of a plant root (Datura root powder) as a bio-adsorbent to that of the synthetic one (Tulsion T-42) for copper adsorption from such effluent. Experiments were carried out in batch studies to optimize parameters such as adsorbent dose, contact time, pH, feed concentration, etc. Results of the batch experiments indicate that 0.2 g of Datura root powder and 0.1 g of Tulsion T-42 showed 95% copper adsorption from an initial feed/solution of 100 ppm Cu at pH 4 in contact time of 15 and 30 min, respectively. Adsorption data for both the adsorbents were fitted well to the Freundlich isotherm. Experimental results were also validated with the kinetic model, which showed that the adsorption of copper followed pseudo-second order rate expression for the both adsorbents. Overall result demonstrates that the bio-adsorbent tested has a potential applicability for metal recovery from the waste solutions/effluents of metal finishing units. In view of the requirements of commercial viability and minimal environmental damage there from, Datura root powder being an effective material for metal uptake, may prove to be a feasible adsorbent for copper recovery after the necessary scale-up studies.

A Study on the Application of Bushings Fire Prevent Structure to Prevent Fire Spread of Transformer (변압기의 화재확산 방지를 위한 부싱 방화구조체 적용에 관한 연구)

  • Kim, Do-Hyun;Cho, Nam-Wook;Yoon, Choung-Ho;Park, Pil-Yong;Park, Keun-Sung
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.53-62
    • /
    • 2017
  • Electric power which is the energy source of economy and industries requires long distance transportation due to regional difference between its production and consumption, and it is supplied through the multi-loop transmission and distribution system. Prior to its actual use, electric power flows through several transformations by voltage transformers in substations depending on the characteristics of each usage, and a transformer has the structure consisting of the main body, winding wire, insulating oil and bushings. A transformer fire that breaks out in substations entails the primary damage that interrupts the power supply to houses and commercial facilities and causes various safety accidents as well as the secondary economic losses. It is considered that causes of such fire include the leak of insulating oil resulting from the destruction of bottom part of bushings, and the chain reaction of fire due to insulating oil that reaches its ignition point within 1 second. The smoke detector and automatic fire extinguishing system are established in order to minimize fire damage, but a difficulty in securing golden time for extinguishing fire due to delay in the operation of detector and release of gas from the extinguishing system has become a problem. Accordingly, this study was carried out according to needs of active mechanism to prevent the spread of fire and block the leak of insulating oil, in accordance with the importance of securing golden time in extinguishing a fire in its early stage. A bushings fireproof structure was developed by applying the high temperature shape retention materials, which are expanded by flame, and mechanical flame cutoff devices. The bushings fireproof structure was installed on the transformer model produced by applying the actual standards of bushings and flange, and the full scale fire test was carried out. It was confirmed that the bushings fireproof structure operated at accurate position and height within 3 seconds from the flame initiation. It is considered that it could block the spread of flame effectively in the event of actual transformer fire.

Next Generation Lightweight Structural Composite Materials for Future Mobility Review: Applicability of Self-Reinforced Composites (미래모빌리티를 위한 차세대 경량구조복합재료 검토: 자기강화복합재료의 적용 가능성)

  • Mi Na Kim;Ji-un Jang;Hyeseong Lee;Myung Jun Oh;Seong Yun Kim
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.1-15
    • /
    • 2023
  • Demand for energy consumption reduction is increasing according to the development expectations of future mobility. Lightweight structural materials are known as a method to reduce greenhouse gas emissions and improve energy efficiency. In particular, fiber reinforced polymer composite (FRP) is attracting attention as a material that can replace existing metal alloys due to its excellent mechanical properties and light weight. In this paper, industrial applications and research trends of carbon fiber reinforced composites (CFRP, carbon FRP) and self-reinforced composites (SRC) were reviewed based on the reinforcement, polymer matrix, and manufacturing process. In order to overcome the expensive process cost and long manufacturing time of the epoxy resin-based autoclave method, which is mainly used in the aircraft field, mass production of CFRP-applied electric vehicles has been reported using a high-pressure resin transfer molding process including fast-curing epoxy. In addition, thermoplastic resin-based CFRP and interface enhancement methods to solve the recycling issue of carbon fiber composites were reviewed in terms of materials and processes. To form a perfect matrix-reinforcement interface, which is known as the major factor inducing the excellent mechanical properties of FRP, studies on SRC impregnated with the same matrix in polymer fibers have been reported. The physical and mechanical properties of SRC based on various thermoplastic polymers were reviewed in terms of polymer orientation and composite structure. In addition, a copolymer matrix strategy for extending the processing window of highly drawn polypropylene fiber-based SRC was discussed. The application of CFRP and SRC as lightweight structural materials can provide potential options for improving the energy efficiency of future mobility.

Seasonal Variations of Water Quality in the Lower Part of the Nagdong River (낙동강 하류수질의 계절적 변화)

  • KIM Yong-Gwan;SHIM Hye-Kung;CHO Hak-Rae;YOU Sun-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.6
    • /
    • pp.511-522
    • /
    • 1984
  • The Nagdong is one of the biggest rivers in Korea, which is very important water source not only for tap water of Pusan city but also for the industrial water. Therefore, authors tried to check the water quality year by year. In this experiment one hundred and twenty water samples collected from August 1983 to July 1984 were analyzed bacteriologically and physiologically. Fifteen sampling stations were established between near Samrangjin and estuary of the river. To evaluate the water quality, temperature, pH, chloride ion, salinity, chemical oxygen demand (COD), electrical conductivity, nutrients, total coliform, fecal coliform, fecal streptococcus, viable cell count and bacterial flora were observed. The variation of water temperature was ranged $-1.5{\sim}29.0^{\circ}C$ (Mean value $13.9{\sim}16.5^{\circ}C$), it in spring was higher as $10{\sim}15^{\circ}C$ about $10^{\circ}C$ than in winter and it in autumm was very stabilized as about $20^{\circ}C$ at each station. The pH variation of the samples was ranged $6.68{\sim}9.15$. The range of concentration of chloride ion and salinity varied $7.4{\sim}l,020.5$ mg/l and $1.05{\sim}33.0\%0$, respectively. Especially, salinity of the 3rd water war was the higher than others as $25.76{\sim}31.58\%0$. COD was ranged $1.45{\sim}14.94$ mg/l and the lower part of the Nagdong River was heavily contaminated by domesitc sewage and waste water from the adjacent factor area. The range of electrical conductivity was $1.360{\times}10^2{\sim}5.650{\times}10^4{\mu}{\mho}/cm$ and that was by far higher the estuary than the upper. Concentration of nutrients were $0.008{\sim}0.040$ mg/l (Mean value $0.019{\sim}0.068$ mg/l) for $NO_2-N,\;0.038{\sim}5.253$ mg/l ($0.351{\sim}2.347$ mg/l) for $NO_3-N,\;0.100{\sim}2.685$ mg/l($0.117{\sim}1.380$ mg/l) for $NH_4-N,\;0.003{\sim}0.084$ mg/l($0.014{\sim}0.065$ mg/l) for $PO_4-P$ and $0.154{\sim}6.123$ mg/l ($1.165{\sim}3.972$ mg/l) for $SiO_2-Si$, respectively. Usually nutrients contents of the water in the upper part(included station 1 to 5) were higher than those of the estuarine area. The bacterial density of the samples ranged 7.3 to 460,000/100 ml for total coliforms, 3.6 to 460,000/100 ml for fecal coliform, $0{\sim}46,000/100ml$ for fecal streptococcus and $<30{\sim}1.2{\times}10^5/ml$ for viable cell count. Composition of coliform was $28\%$ Escherichia coli group, $18\%$ Citrobacter freundii group, $31\%$ Enterobacter aerogenes group and $22\%$ others. Predominant species among the 659 strains isolated from the samples were Pseudomonas spp. ($42\%$), Flavobacterium spp. ($20\%$) and Moraxella spp. ($12\%$).

  • PDF