• Title/Summary/Keyword: 전기저항률

Search Result 263, Processing Time 0.028 seconds

Three-Dimensional Subsurface Resistivity Profile using Electrical Resistance Tomography for Designing Grounding Grid (접지 그리드 설계를 위한 전기 저항 단층촬영법에 기반한 지표의 3차원 저항률 분포 추정)

  • Khambampati, Anil Kumar;Kim, Kyung Youn
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.117-128
    • /
    • 2016
  • Installation of earth grounding system is essential to ensure personnel safety and correct operation of electrical equipment. Earth parameters, especially, soil resistivity has to be determined in designing an efficient earth grounding system. The most common applied technique to measure soil resistance is Wenner four-point method. Implementation of this method is expensive, time consuming and cumbersome as large set of measurements with variable electrode spacing are required to obtain a one dimensional resistivity plot. It is advantageous to have a method which is of low cost and provides fast measurements. In this perspective, electrical resistance tomography (ERT) is applied to estimate subsurface resistivity profile. Electrical resistance tomograms characterize the soil resistivity distribution based on the measurements from electrodes placed in the region of interest. The nonlinear ill-posed inverse problem is solved using iterated Gauss-Newton method with Tikhonov regularization. Through extensive numerical simulations, it is found that ERT offers promising performance in estimating the three-dimensional soil resistivity distribution.

Apparent Soil Resistivity Calculation Using Complex Image Method (복소수이미지 방법을 이용한 겉보기 대지저항률 계산)

  • Kim, Ho-Chan;Boo, Chang-Jin;Kang, Min-Jae
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.318-321
    • /
    • 2019
  • The apparent soil resistivity is used for estimating multilayer soil parameters, such as, layer's depth and soil resistivity. The apparent soil resistivity can be measured, and also can be calculated if soil parameters are given, becacuse the apparent soil resistivity is a function of these parameters. Therefore, any optimization algorithms can be used to find these parameters which make the calculated apparent soil resistivity close to the measured one. The equation for calculating the apparent soil resistivity is complicated and time consumed, because it is composed of an infinite integral which includes a zero order Bessel's function of the first kind. In this paper, a fast algorithm for calculating the apparent soil resistivity of horizontal multilayer earth structure has been presented using complex image method.

Resistivity Analysis of Model Block for Using of Structure Grounding Electrode (구조체접지극 활용을 위한 모형블록의 저항률 분석)

  • Kim, Sung-Sam;Jeong, Man-Gil;Choi, Jong-Kyu;Koh, Hee-Seog
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.2
    • /
    • pp.40-45
    • /
    • 2007
  • This study analyzed the resistivity characteristic of model block to make the good use of structure grounding and substitution grounding electrode base of building. After making the model block of mortar and concrete block, it measured resistivity in hydrous condition and dry condition and compared with the blocks that is mixed earth resistance lowering agent to decrease resistivity. The resistance value of block accepted much influence by block resistivity. When the block resistivity was same or similar value, the value of soil resistivity has occurred as different as the value of grounding resistance.

The method of ground connection system design due to the difference of earth restivity (대지저항률 변화에 따른 접지설계 기법)

  • Han, C.D.;Choi, H.C.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.224-225
    • /
    • 2006
  • 접지설비는 전력계통의 안정적인 운전을 유지하고 사고시 고장전류를 대지로 안전하게 방전시켜 사람과 전기설비의 안전을 확보하는 데 그 목적이 있다. 접지설계시 대지저항률은 중요한 설계인자로 대지저항률 변동에 따른 접지설계 방법을 접지 설계프로그램을 이용하여 비교, 분석하였다.

  • PDF

A Study on the Identification of Specific Earth Resistivity for Grounding Design of 500 KV Transmission Towers (500 kV 송전철탑 접지설계를 위한 대지저항률 산정에 관한 연구)

  • Choi, Jong-Kee;Lee, Sung-Doo;Lee, Dong-Il;Jung, Gil-Jo;Kim, Kyung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.703-705
    • /
    • 2005
  • 접지설계에 있어서 토양의 전기적 특성은 접지극의 형상과 더불어 가장 중요한 설계요소 중 하나이며 이러한 토양의 전기적 특성은 접지극이 매설될 지역의 고유한 저항률, 즉 고유저항률(specific earth resistivity)로 대표되어 왔다. 이처럼 고유저항률에 근거한 수작업 접지설계는 복잡한 구조와 특성을 갖는 실제 토양을 균일한 매질로 등가화하는 절차를 필요로 한다. 본 논문에서는 미얀마 500 kV 송전철탑 수작업 접지설계를 위하여 수평다층토양을 균일매질로 등가화하는 절차를 제시하였다.

  • PDF

Development and Verification of 4-Electrode Resistivity Probe (4전극 전기비저항 탐사장비의 개발 및 검증)

  • Kim, Joon-Han;Yoon, Hyung-Koo;Jung, Soon-Hyuck;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3C
    • /
    • pp.127-136
    • /
    • 2009
  • The objective of this study is the development and verification of the 4-electrode resistivity probe (4ERP) for the estimation of electrical properties of the saturated soils. The 4ERPs with wedge and plane types are manufactured to obtain the electrical resistivity without polarization at the electrodes by using Wenner array. The wedge type is for the penetration into the soil samples and the plane type is for the installation into the cells used for the laboratory tests. The consolidation tests are carried out by using 6 types of glass beads and 3 types of sands in size. The test results show that the electrical resistivity increases with a decrease in the porosity, and the constant m used in Archie's law is dependent on the particle shape rather particle size. The one dimensional liquefaction tests show that the porosity obtained by the 4ERP is similar to that determined by the volume fraction. The penetration of the 4ERP into the large scale calibration chamber produces the resistivity profiles. This study demonstrates that the 4ERP may effectively estimate the porosity of the saturated soils.

Effects of Matrix Strength, Fiber Type, and Fiber Content on the Electrical Resistivity of Steel-Fiber-Reinforced Cement Composites During Fiber Pullout (매트릭스 강도, 섬유 형식 및 보강량에 강섬유 보강 시멘트 복합재료의 인발시 전기저항에 미치는 영향)

  • Le, Huy Viet;Kim, Dong Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.675-689
    • /
    • 2019
  • Development of smart construction materials with both self-strain and self-damage sensing capacities is still difficult because of little information about the self-damage sensing source. Herein, we investigate the effects of the matrix strength, fiber geometry, and fiber content on the electrical resistivity of steel-fiber-reinforced cement composites by multi-fiber pullout testing combined with electrical resistivity measurements. The results reveal that the electrical resistivity of steel-fiber-reinforced cement composites clearly decreased during fiber-matrix debonding. A higher fiber-matrix interfacial bonding generally leads to a higher reduction in the electrical resistivity of the composite during fiber debonding due to the change in high electrical resistivity phase at the fiber-matrix interface. Higher matrix strengths, brass-coated steel fibers, and deformed steel fibers generally produced higher interfacial bond strengths and, consequently, a greater reduction in electrical resistivity during fiber debonding.

Electrical Resistivity at Room Temperature and Relation between Physical Properties of Core Samples from Ulleung Island (울릉도 시추 코어의 상온 전기비저항과 물성 간의 상관성)

  • Lee, Tae Jong;Lee, Sang Kyu;Yun, Kwan-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.4
    • /
    • pp.171-180
    • /
    • 2015
  • Electrical resistivity of 23 core samples from Ulleung Island at dry or saturated condition has been measured along with dry density and effective porosity, and the relations between the properties has also been discussed. Upper and lower bounds of electrical resistivity at room temperature can be provided by the dry- and saturated-resistivity, respectively. Injecting nitrogen gas to the pore space at the very end of drying process can prevent humid air from getting into the pore space, so that measurement of dry-resistivity can be less affected by humidity in the air. Dry density and porosity have very close correlation; the ratio between increase of porosity and the decrease of density showed distinct relation to the rock types, such that basaltic rocks showed higher ratio while trachytic rocks showed lower. Saturated resistivity showed close correlation to density and effective porosity of the rock sample, while dry resistivity didn't.

Make-up of Equivalent Circuit of Grounding System using Water Resistivity in Hemispherical Electrode System (반구형 전극계에서 물의 저항률을 이용한 접지시스템의 등가회로 구성)

  • Lee, Bok-Hee;Choi, Jong-Hyuk;Bae, Sung-Bae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.8
    • /
    • pp.109-115
    • /
    • 2008
  • A design criterion of grounding systems is commonly based on the ground resistance measured with low frequency in Korea. When lightning surges which have high frequency components are injected into the grounding system, the grounding impedance is great]y different from the static grounding resistance. In order to investigate the effect of water resistivity on the high frequency performance of grounding systems, this paper presents the frequency-dependent admittance using water tank simulating the grounding system in different water resistivities. As a result, because of capacitive effect admittances and conductance are increased with increasing frequency in higher water resistivity of greater than 500[${\Omega}{\cdot}m$]. On the other hand, admittances and conductances are decreased with increasing frequency due to inductive effect in lower water resistivity of less than 500[${\Omega}{\cdot}m$]. The phase difference between the current and voltage increases in the range of 200[kHz] to 5[MHz]. Consequently, frequency-dependent performance of grounding systems is closely related to the soil resistivity, it is necessary to consider the effect of grounding system performance on the frequency and soil resistivity.