• Title/Summary/Keyword: 전기인광

Search Result 60, Processing Time 0.031 seconds

휘도 향상용 ZnS 나노 렌즈 제작 및 OLED 소자의 전기·광학적 특성 연구

  • Yun, Dang-Mo;Kim, Il-Gu;Jo, Song-Jin;Kim, Mi-Yeong;Lee, Seung-Hyeon;Lee, Beom-Ju;Lee, Su-Hyeong;Lee, Chung-Hun;Sin, Jin-Guk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.391.1-391.1
    • /
    • 2014
  • 광물질로 인광물질을 사용한 유기발광다이오드(Organic Light Emitting Diode, OLED)는 재결합에 의해 형성된 여기자를 발광에 모두 이용할 수 있기 때문에 내부 양자효율이 100%로 알려져 있다. 하지만 유기층에서 발생된 빛이 소비자에게 전달되기까지의 경로에서 발생되는 wave guiding effect로 인해, 발생된 빛의 20%만이 전달된다. 특히 bottom emission type의 OLED에서 glass와 air사이의 굴절률이 달라 발생되는 전반사에 의해 손실되는 빛의 양은 35%에 달한다. 따라서 본 연구에서는 glass와 air사이의 전반사를 줄이고 광추출을 위해 습식 방법으로 hemisphere type의 ZnS를 제작하였다. 제작된 ZnS는 직경 200nm까지 성장하였으며, 이렇게 제작된 ZnS nano lens가 적용된 OLED device에서 휘도가 20% 이상 향상되는 것을 확인하였다.

  • PDF

Properties of Wide-Gap Material for Blue Phosphorescent Light Emitting Device (청색 인광 유기EL 소자를 위한 wide-gap 재료의 제작 및 특성)

  • Chun, Ji-Yun;Han, Jin-Woo;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.36-36
    • /
    • 2008
  • Organic light-emitting device (OLED) have become very attractive due to their potential application in flat panel displays. One important problem to be solved for practical application of full-color OLED is development of three primary color (Red, Green and Blue) emitting molecule with high luminous operation. Particularly, the development of organic materials for blue electroluminescence (EL) lags significantly behind that for the other two primary colors. For this reason, Flu-Si was synthesized and characterized by means of high-resolution mass spectro metry and elemental analyses. Flu-Si has the more wide optical band gap (Eg = 3.86) than reference material (Cz-Si, Eg = 3.52 eV). We measured the photophysical and electrochemical properties of Flu-Si. The HOMO-LUMO levels were estimated by the oxidation potential and the onset of the UV-Vis absorption spectra. The EL properties were studied by the device fabricated as a blue light emitting material with FIrpic.

  • PDF

Emission Characteristics of Red OLEDs with Fluorescent and Phosphorescent Dopant (형광과 인광 첨가제에 의한 적색 OLED 소자의 발광 특성)

  • Park, Yeon-Suk;Yang, Jae-Woong;Ju, Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.12
    • /
    • pp.1039-1044
    • /
    • 2009
  • Red color OLED has been fabricated by the doping method apply to CBP using co-evaporation, GDI4349 of phosphorescent dopant, and rubrene of fluorescent dopant. The OLED structure are multi-layer of ITO(150 nm)/ELM_HIL(50 nm)/ELM_HTL(30 nm)/CBP : Rubrene, GDI4349 (30 nm)/BAlq (30 nm)/LiF(0.7 nm)/Al (100 nm). Accomplished best result at 3 vol.% of rubrene when the OLEDs were made of 1, 3, 5, 7, 9 vol.% doped rubrene. The highest efficiency of 7.2 cd/A was resulted at 8 vol.% of GDI4349 when the OLEDs were made among 5, 8, 11, 14 vol.% of GDI4349. Obviously, the best concentration of rubrene at 3 vol.% and changing GDI4349 concentration to 5, 8, 11, 14 vol.% OLED dramatically enhanced characteristic of resulted 10.7 cd/A at 8 vol.% of GDI4349. This result would understand to analyse as the emission efficiency increases by energy transport efficiency increase using GDI4349 energy transfer when rubrene absorbs the energy from CBP of fluorescences host.

Effects of Spacer Inserted Inside the Emission Layer on the Efficiency and Emission Characteristics of Phosphorescent Organic Light-emitting Diodes (발광층 내의 스페이서가 인광 OLED의 효율 및 발광 특성에 미치는 영향)

  • Seo, Yu-Seok;Moon, Dae-Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.6
    • /
    • pp.377-382
    • /
    • 2014
  • We have investigated the effects of spacer layer inserted between blue and red doped emission layers on the emission and efficiency characteristics of phosphorescent OLEDs. N,N'-di-carbazolyl-3,5-benzene (mCP) was used as a host layer. Iridium(III)bis[(4,6-di-fluorophenyl)- pyridinato-N,$C^2$']picolinate (FIrpic) and tris(1-phenyl-isoquinolinato-$C^2$,N)iridium(III) [Ir(piq)3] were used as blue and red dopants, respectively. The emission layer structure was mCP (1-x) nm/mCP:$Ir(piq)_3$ (5 nm, 10%)/mCP (x nm)/mCP:FIrpic (5 nm, 10%). The thickness of mCP spacer layer was varied from 0 to 15 nm. The emission from $Ir(piq)_3$ and the efficiency of the device were dominated by energy transfer from mCP host and FIrpic molecules, and by diffusion of mCP host triplet excitons.

혼합 형광체를 사용하여 제작한 백색 유기발광소자의 전기적 및 광학적 특성

  • Jang, Jae-Seung;Kim, Dae-Hun;Kim, Tae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.508-508
    • /
    • 2013
  • 백색 유기발광소자는 전색 디스플레이, 액정디스플레이의 backlights, 조명에서 잠재적인 가능성 때문에 디스플레이와 조명 업계에서 각광 받고 있다. 백색 유기발광소자를 제작하기 위한 방법으로 형광체를 이용한 백색 유기발광소자가 연구되고 있지만, 아직 색순도와 색좌표에 대한 연구가 필요하다. 본 연구에서는 무기물 형광체를 이용한 백색 유기발광소자의 전기적 특성과 광학적 특성을 관찰하였다. 광원으로 사용된 청색 유기발광소자에 적색과 녹색의 무기물 형광체를 결합하는 방법으로 백색 유기발광소자를 제작하였다. 광원으로 사용한 청색 유기발광소자의 양극으로는 투명전극으로 널리 쓰이고 있는 ITO를 사용하였고 정공 수송층으로는 N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine, 청색 발광층으로는 1,3-bis(carbazol-9-yl) benzene 호스트에 bis (3,5-difluoro-2-(2-pyridyl)phenyl)-(2-carboxypyridyl) iridium (III) 청색인광도 펀트를 사용하였다. 정공 저지층과 전자 수송층으로는 각각 2,9-dimethyl-4,7-diphenyl-1,10-phenanthorlene와 4,7-diphenyl-1,10-phenanthroline을 사용하고 전자 주입층으로는 lithium quinolate를 사용하였으며 음극으로는 Al을 사용하였다. 색 변환층으로 사용된 유기물 형광체는 sol-gel 방법으로 제작된 적색 형광체와 녹색 형광체를 사용하였다. Sol-gel 방법으로 제작된 형광체에 대한 주사현미경 측정 결과 입자의 표면이 고르고 크기가 작고 균일하였고, 높은 온도 열처리에 따라서 용매제가 대부분 제거되어 형광체 발광 특성이 잘 일어났음을 확인하였다. 제작한 백색유기발광소자에서 혼합비율에 따른 전계발광 특성 변화를 관찰하였다.

  • PDF

A study on the improvement in the efficiency of blue phosphorescent organic light-emitting diodes (청색 인광물질을 이용한 유기 발광 다이오드의 효율개선에 관한 연구)

  • Yang, Mi-Youn;Kim, Jun-Ho;Ha, Yun-Kung;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1070-1073
    • /
    • 2004
  • In this study, Tri(1-phenylpyrazolato)iridium $(Ir(ppz)_3)$ was prepared for the pure blue phosphorescent dopant and various host materials were used for the appropriate energy alignment. Although the luminance was pure blue with the CIE coordinates of x = 0.158, y = 0.139, device efficiencies didn't improve yet. Instead of finding the proper host materials, the alteration of structure of OLEDs affected the improvement of electrical and optical characteristics of the devices. It was worthy that insertion the exciton formation zone with the host material between the emitting zone and the exciton blocking layer. The device with a structure of ITO/NPB/Ir(ppz)3 doped in CBP/CBP for the exciton formation zone/BCP/Liq/Al was fabricated and the characteristics were observed compared with the devices without the exciton formation zone. When CBP was used for the exciton formation zone, the device efficiency reached to over 0.25 cd/A. While the device used CBP only for the host showed the luminous efficiency of under 0.11 cd/A

  • PDF

Emission Characteristics of White PHOLEDs with Different Emitting Layer Structures (발광층 구조에 따른 백색 인광 OLED의 발광 특성)

  • Seo, Jung-Hyun;Paek, Kyeong-Kap;Ju, Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.6
    • /
    • pp.456-461
    • /
    • 2012
  • We studied the emission characteristics of white phosphorescent organic light-emitting diodes (PHOLEDs), which were fabricated using a two-wavelength method. To optimize emission characteristics of white PHOLEDs, white PHOLEDs with red/blue, blue/red and red/blue/red emitting layer (EML) structures were fabricated using a host-dopant system. In case of white PHOLEDs with red/blue structure, the best efficiency was obtained at a structure of red (15 nm)/blue (15 nm). But the emission color was blue-shifted white. In case of white PHOLEDs with blue/red structure, the better color purity and efficiency were observed at a blue (29 nm)/red (1 nm) structure. For additional improvement of color purity in white PHOLEDs with blue (29 nm)/red (1 nm) EMLs, we fabricated white PHOLEDs with red (1 nm)/blue (28 nm)/red (1 nm) structure. The current efficiency, external quantum efficiency, and CIE (x, y) coordinate were 27.2 cd/A, 15.1%, and (0.382, 0.369) at 1,000 $cd/m^2$, respectively.

Electroluminescent Characteristics of Green Phosphorescent Organic Light Emitting Devices with the Mixed Host Layer of TCTA:TAZ between TCTA and TAZ (TCTA-TAZ 사이 TCTA:TAZ 혼합호스트 층을 갖는 녹색 인광소자의 전계발광 특성)

  • Jang, J.G.;Shin, S.B.;Shin, H.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.427-428
    • /
    • 2008
  • New high efficiency green light emitting phosphorescent devices with emission layers of [TCTA/TCTA:TAZ/TAZ]:Ir$(ppy)_3$ have been fabricated and evaluated in this paper. Among the devices having different thicknesses of TCTA:TAZ mixed layer in the total 300$\AA$-thick host of TCTA(80$\AA$)/TCTA:TAZ (50~100$\AA$)/TAZ, the device with host of TCTA(80$\AA$)/TCTA:TAZ(90$\AA$)/TAZ(130$\AA$) showed the best electroluminescent characteristics with the current density of 95 mA/$cm^2$ and luminance of 25,000 cd/$m^2$ at an applied voltage of 10V. The maximum current efficiency was 52 cd/A under the luminance of 400 cd/$m^2$.

  • PDF

Characteristics of phosphorescent OLED fabricated on IAZO anode grown by co-sputtering method (Co-sputtering 방법으로 제작한 IAZO 박막의 특성과 이를 이용하여 제작한 인광 OLED의 특성 분석)

  • Bae, Jung-Hyeok;Kim, Han-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.60-61
    • /
    • 2007
  • IAZO (indium aluminium zinc oxide) anode films were co-sputtered on glass substrate using a dual target DC magnetron sputtering system. For preparation of IATO films, at constant DC power of IZO (indium zinc oxide) target of 100 W, the DC power of AZO (Aluminum zinc oxide) target was varied from 0 to 100 W. To analyze electrical and optical properties of IAZO anode, Hall measurement examination and UV/V is spectrometer were performed, respectively. In addition, structure of IAZO anode film was examined by X-ray diffraction (XRD) method. Surface smoothness was investigated by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). From co-sputtered IAZO anode, good conductivity($2.32{\times}10^{-4}{\Omega}.cm$) and high transparency(approximately 80%) in the visible range were obtained even at low temperature deposition. Finally, J-V-L characteristics of phosphorescent OLED with IAZO anode were studied by Keithley 2400 and compared with phosphorescent OLED with conventional ITO anode.

  • PDF

White Organic Light-emitting Diodes using red and blue phosphorescent materials (적색과 청색 인광 소재를 이용한 백색 유기 발광 소자에 관한 연구)

  • Park, Jung-Hyun;Choi, Hak-Bum;Kim, Gu-Young;Lee, Seok-Jae;Seo, Ji-Hyun;Seo, Ji-Hoon;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.64-65
    • /
    • 2007
  • High-efficiency white organic light-emitting diodes (WOLEDs) were fabricated with two emissive layers and exciton blocking layer was sandwiched between two phosphorescent dyes which were, bis(3,5-Difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl) iridium III (Flrpic) as blue emission and a newly synthesized red phosphorescent material guest, Bis(5-benzoyl-2-phenylpyridinato-C,N)iridium(III) (acetylacetonate) ((Bzppy)2Ir(III)acac). This exciton blocking layer prevents a triple-triple energy transfer between the two phosphorescent emissive layers with balanced emission of blue and red. The white device showed the Commission Internationale d'Eclairage (CIEx,y) coordinates of (0.34, 0.40) at the maximum luminance of $24100\;cd/m^2$ and maximum luminous efficiency of 22.4 cd/A, respectively.

  • PDF