• Title/Summary/Keyword: 전계 효과 트랜지스터

Search Result 230, Processing Time 0.026 seconds

TID and SEGR Testing on MOSFET of DC/DC Power Buck Converter (DC/DC 강압컨버터용 MOSFET의 TID 및 SEGR 실험)

  • Lho, Young Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.11
    • /
    • pp.981-987
    • /
    • 2014
  • DC/DC switching power converters are commonly used to generate a regulated DC output voltage with high efficiency. The DC/DC converter is composed of a MOSFET (metal-oxide semiconductor field effect transistor), a PWM-IC (pulse width modulation-integrated circuit) controller, inductor, capacitor, etc. It is shown that the variation of threshold voltage and the breakdown voltage in the electrical characteristics of MOSFET occurs by radiation effects in TID (Total Ionizing Dose) testing at the low energy ${\gamma}$ rays using $^{60}Co$, and 5 heavy ions make the gate of MOSFET broken in SEGR (Single Event Gate Rupture) testing. TID testing on MOSFET is accomplished up to the total dose of 40 krad, and the cross section($cm^2$) versus LET(MeV/mg/$cm^2$) in the MOSFET operation is studied at SEGR testing after implementation of the controller board.

Highly Stable Graphene Field-effect Transistors using Inverse Transfer Method (역전사법을 활용한 고안정성 그래핀 기반 전계효과 트랜지스터 제작)

  • Lee, Eunho;Bang, Daesuk
    • Journal of Adhesion and Interface
    • /
    • v.22 no.4
    • /
    • pp.153-157
    • /
    • 2021
  • Graphene, a two-dimensional carbon allotrope, has outstanding mechanical and electrical properties. In particular, the charge carrier mobility of graphene is known to be about 100 times higher than that of silicon, and it has received attention as a core material for next-generation electronic devices. However, graphene is very sensitive to environmental conditions, especially vulnerable to moisture or oxygen. It becomes a disadvantage in that the stability of the graphene-based electronic device, so various attempts are being made to solve this problem. In this work, we report a method to greatly improve the stability by controlling the surface energy of the polymer layer used for transferring the insulating layer of the graphene field-effect transistor. As the surface energy of the polymer used as the insulating layer was lowered, the stability could be improved by effectively controlling the adsorption of impurities in the atmosphere such as water molecules or oxygen.

Investigation of Solvent Effect on the Electrical Properties of Triisopropylsilylethynyl(TIPS) Pentacene Organic Thin-film Transistors (용제에 따른 TIPS(triisopropylsilyl) Pentacene을 이용한 유기박막 트렌지스터의 전기적 특성에 관한 연구)

  • Kim, K.S.;Kim, Y.H.;Han, J.-In;Choi, K.N.;Kwak, S.K.;Kim, D.S.;Chung, K.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.5
    • /
    • pp.435-441
    • /
    • 2008
  • In this paper, we investigated the electrical properties of triisopropylsilyl (TIPS) pentacene organic thin-film transistor (OTFT) depending on solvent type. We spin coated TIPS pentacene by using chlorobenzene, p-xylene, chloroform, and toluene as solvents. Fabricated OTFT with chlorobenzene shows field-effect mobility of $1.0{\times}10^{-2}cm^2/V{\cdot}s$, on/off ratio of $4.3{\times}10^3$ and threshold voltage of 5.5 V. In contrast, with chloroform, the mobility is $5.8{\times}10^{-7}cm^2/V{\cdot}s$, on/off ratio of $1.1{\times}10^2$ and threshold voltage of 1.7 V. Moreover we measured the grain size of each TIPS pentacene solvent by atomic force microscopy (AFM). From these results, it can be concluded that a solvent with higher boiling point results in better electrical characteristics due to large grain size and high crystallinity of TIPS pentacene layer. In this paper TIPS pentacene with chlorobenzene shows the best electrical properties.

Effects of Mobility-Gap States on the Performance of a-Si:H Field-Effect Transistors (이동도갭 상태들의 수소화된 비결정 실리콘 전계효과 트랜지스터 성능에 대한 영향)

  • 제갈장
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.52-57
    • /
    • 1995
  • An accurate and efficient single-integral semi-numerical model is developed and applied to analyse effects of localized electronic states in the mobility gap on the drain-current versus gale-voltage characteristics of hydrogenated amorphous field-effect transistors. It is shown that the low-density deep-gap states distributed in the midgap also sensitively and largely influence the device electronic performance as well as well as the large-density tail states distributed near the conduction band edge.

  • PDF

Investigation of Trap-Assisted-Tunneling Mechanism in L-Shaped Tunneling Field-Effect-Transistor (L형 터널 트랜지스터의 트랩-보조-터널링 현상 조사)

  • Najam, Faraz;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.512-513
    • /
    • 2018
  • Trap-assisted-tunneling (TAT) degrades subthreshold slope of real-world tunneling field-effect-transistors (TFET) and it should be considered in the simulation. However, its mechanism is not very well understood in line tunneling type L-shaped TFET (LTFET). This study investigates TAT mechanism in LTFETs using dynamic nonlcoal Schenk model. Both phonon assisted and direct band to trap tunneling events are considered in this study.

  • PDF

Design and Fabrication of Buried Channel Polycrystalline Silicon Thin Film Transistor (Buried Channel 다결정 실리콘 박막 트랜지스터의 설계 및 제작)

  • 박철민;강지훈;유준석;한민구
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.12
    • /
    • pp.53-58
    • /
    • 1998
  • A buried channel poly-Si TFT (BCTFT) for application of high performance integrated circuits has been proposed and fabricated. BCTFT has unique features, such as the moderately-doped buried channel and counter-doped body region for conductivity modulation, and the fourth terminal entitled back bias for preventing kink effect. The n-type and p-type BCTFT exhibits superior performance to conventional poly-Si TFT in ON-current and field effect mobility due to moderate doping at the buried channel. The OFF-state leakage current is not increased because the carrier drift is suppressed by the p-n junction depletion between the moderately-doped buried channel and the counter-doped body region.

  • PDF

Degradation Characteristics of Mobility in Channel of P-MOSFET's by Hot Carriers (핫 캐리어에 의한 피-모스 트랜지스터의 채널에서 이동도의 열화 특성)

  • 이용재
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.1
    • /
    • pp.26-32
    • /
    • 1998
  • We have studied how the characteristics degradation between effective mobility and field effect mobility of gate channel in p-MOSFET's affects the gate channel length being follow by increased stress time and increased drain-source voltage stress. The experimental results between effective and field-effect mobility were analyzed that the measurement data are identical at the point of minimum slope in threshold voltage, the other part is different, that is, the effective mobility it the faster than the field-effect mobility. Also, It was found that the effective and field-effect mobility. Also, It was found that the effective and field-effect mobility of p-MOSFET's with short channel are increased by decreased channel length, increased stress time and increased drain-source voltage stress.

  • PDF

Pyro Squib Circuit Design with Stable Constant Current Driving Method (안정적인 정전류 구동 방식의 파이로 스퀴브 회로 설계)

  • Soh, KyoungJae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.545-551
    • /
    • 2022
  • We proposed a design method for constant current pyro squib circuit. The current method using N MOSFET for the stability problem has a weakness of the current change, requiring a new design. This paper identified the problem with conventional squib circuit where the current is reduced by 25 % when maximum resistance is 3 ohms. Thus, we proposed a stable constant current driving circuit using P MOSFET and PNP BJT. We confirmed stable constant circuit operation through simulations and measurements of the proposed circuit design where the current did not change until the resistance reached 3 ohms.

Characteristics of MOSFET-Structured Silicon Field Emitter by Computer Simulation (전계 효과 트랜지스터로 제어하는 전계 방출 소자의 시뮬레이션에 의한 특성 평가)

  • Kim, Jin-Ho;Kil, Tae-Hyun;Yun, Sang-Han;Kim, Yong-Sang;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1318-1320
    • /
    • 1998
  • We have investigated the electrical characteristics of a MOSFET-structured silicon field emitter by employing Maxwell 2D and Silvaco simulators. The potential distribution is obtained by Maxwell 2D simulator and the field emission current is calculated by Fowler-Nordheim equations. The characteristics of MOSFET is simulated by Silvaco simulator. Simulated results are almost identical to the experimental results. Also, we have studied the emission characteristics as funtions of several geometric parameters.

  • PDF