DOI QR코드

DOI QR Code

Investigation of Solvent Effect on the Electrical Properties of Triisopropylsilylethynyl(TIPS) Pentacene Organic Thin-film Transistors

용제에 따른 TIPS(triisopropylsilyl) Pentacene을 이용한 유기박막 트렌지스터의 전기적 특성에 관한 연구

  • Kim, K.S. (Information Display Research Center, Korea Electronics Technolygy Institute) ;
  • Kim, Y.H. (Information Display Research Center, Korea Electronics Technolygy Institute) ;
  • Han, J.-In (Information Display Research Center, Korea Electronics Technolygy Institute) ;
  • Choi, K.N. (Dept. Electronics Engineering, Kyung Hee University) ;
  • Kwak, S.K. (Department of Electronic Engineering Yuhan College) ;
  • Kim, D.S. (Dept. of Computer Systems & Engineering, Inha Technical Collge) ;
  • Chung, K.S. (Dept. Electronics Engineering, Kyung Hee University)
  • 김경석 (전자부품연구원 디스플레이연구센터) ;
  • 김영훈 (전자부품연구원 디스플레이연구센터) ;
  • 한정인 (전자부품연구원 디스플레이연구센터) ;
  • 최광남 (경희대학교 전자정보대학 전자공학과) ;
  • 곽성관 (유한대학 전자정보과) ;
  • 김동식 (인하공업전문대학 컴퓨터시스템과) ;
  • 정관수 (경희대학교 전자정보대학 전자공학과)
  • Published : 2008.09.30

Abstract

In this paper, we investigated the electrical properties of triisopropylsilyl (TIPS) pentacene organic thin-film transistor (OTFT) depending on solvent type. We spin coated TIPS pentacene by using chlorobenzene, p-xylene, chloroform, and toluene as solvents. Fabricated OTFT with chlorobenzene shows field-effect mobility of $1.0{\times}10^{-2}cm^2/V{\cdot}s$, on/off ratio of $4.3{\times}10^3$ and threshold voltage of 5.5 V. In contrast, with chloroform, the mobility is $5.8{\times}10^{-7}cm^2/V{\cdot}s$, on/off ratio of $1.1{\times}10^2$ and threshold voltage of 1.7 V. Moreover we measured the grain size of each TIPS pentacene solvent by atomic force microscopy (AFM). From these results, it can be concluded that a solvent with higher boiling point results in better electrical characteristics due to large grain size and high crystallinity of TIPS pentacene layer. In this paper TIPS pentacene with chlorobenzene shows the best electrical properties.

본 논문은 TIPS Pentacene을 유기반도체로 사용한 유기박막 트랜지스터의 용제에 따른 전기적 특성에 대한 연구로서, 용제로는 chlorobenzene, p-xylene, chloroform, toluene을 사용하였으며, 회전 도포 방법을 사용하여 TIPS pentacene을 혼합하여 적층하였다. chlorobenzene을 사용하여 만들어진 유기박막 트랜지스터는 $1.0{\times}10^{-2}cm^2/V{\cdot}s$의 전계효과 이동도, $4.3{\times}10^3$의 on/off 비율, 5.5 V의 문턱전압의 특성을 보였다. 반대로, chloroform을 사용하여 만들어진 유기박막 트랜지스터는 $5.8{\times}10^{-7}cm^2/V{\cdot}s$의 전계효과 이동도, $1.1{\times}10^2$의 on/off 비율, 1.7 V의 문턱전압의 특성을 보였다. 또한 각 용제에 따른 TIPS pentacene 결정크기를 AFM을 통하여 측정하였다. 이와 같은 결과들을 통하여, 더 높은 끊는점을 가진 용제는 TIPS Pentacene의 더 큰 결정 크기와 높은 결정화 성향으로 인하여 더 좋은 전기적 특성을 가지는 것을 확인할 수 있었으며, 본 실험에서는 끓는점이 가장 높은 chlorobenzene을 사용한 TIPS Pentacene 유기박막 트랜지스터가 가장 좋은 전기적 특성을 나타내는 것을 확인하였다.

Keywords

References

  1. Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices (Cambridge University Press, New York, 1988) p. 11
  2. A. Tsumma, H. Koezuka, and T. Ando, Appl. Phys. Lett. 49, 1210 (1986) https://doi.org/10.1063/1.97417
  3. G. Horowitz, Adv. Matter. 10, 365, (1998) https://doi.org/10.1002/(SICI)1521-4095(199803)10:5<365::AID-ADMA365>3.0.CO;2-U
  4. H. E Katz and Z. Bao, J. Phys. Chem. B 104, 671 (2000) https://doi.org/10.1021/jp992853n
  5. H. Sirrinbhaus, N. Tessler, and R. H. Friend, Science 280, 1741 (1998) https://doi.org/10.1126/science.280.5370.1741
  6. A. Dodabalapur, Z. Bao, A. Makhija, J. G. Laquindanum, V. R. Raju, Y. Feng, H. E. Katz, and J. Rogers, Appl. Phys. Lett. 73, 142 (1998) https://doi.org/10.1063/1.121736
  7. R. Wisnieff, Nature 394, 225 (1998) https://doi.org/10.1038/28278
  8. B.Comiskey, J. D. Albert, H. Yoshizawa, and J. Jacobson, Nature 394, 253 (1998) https://doi.org/10.1038/28349
  9. N. K. Sheridon, U.S. Patent 4, 854 (1978)
  10. A. R. Brown, A. Pomp, C. M. Hart, and D. M. de Leeuw, Science 270, 972 (1995) https://doi.org/10.1126/science.270.5238.972
  11. C. J. Drury, C. M. J Mutsaers, C. M. Hart, M. Matters, and D. M. de Leeuw, Appl. Phys. Lett. 73, 108 (1998) https://doi.org/10.1063/1.121783
  12. Y. Y. Lin, A. Dodabalapur, R. Sarpeshkar, Z. Bao, W. Li, K. Baldwin, V. R. Raju, and H. E. Katz, Appl. Phys. Lett. 74, 2714 (1999) https://doi.org/10.1063/1.123946
  13. Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, IEEE Trans. Electron Devices 44, 1325 (1997) https://doi.org/10.1109/16.605476
  14. T. N. Jackson, Y. Y. Lin, D. J. Gundlach, and H. Klauk, IEEE J. Sel. Top. Quantum Electron. 4, 100 (1998) https://doi.org/10.1109/2944.669475
  15. D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson, and D. G. Schlom, IEEE Electron Device Lett. 18, 87 (1997) https://doi.org/10.1109/55.556089
  16. Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, IEEE Electron Device Lett. 18, 606 (1997) https://doi.org/10.1109/55.644085
  17. D.S. Kim, Y.S. Lee, H.H. Park, J.S. Choi, D.Y. Kang, J. Kor. Vac. Soc., Vol. 9, No. 4. 379-381 (2000)
  18. S.H. Cho, S.H. Kim, N.-E. Lee, H.M. Kim, Y.W. Nam, Thin Solid Films 475, 68 (2005) https://doi.org/10.1016/j.tsf.2004.08.081
  19. S.H. Cho, S.H. Kim, J.G. Lee, N.-E. Lee, Microelectron. Eng. 77, 116 (2005) https://doi.org/10.1016/j.mee.2004.09.007
  20. Jui-Fen Chang, Baoquan Sun, Dag W. Breiby, Martin M. Nielsen, Theis I. Solling, Mark Giles, Iain McCulloch, and Henning Sirringhaus, Chem. Mater., 16(23), pp.4772-4776 (2004) https://doi.org/10.1021/cm049617w
  21. Samil Kho, Minsu Kim, Sunyoung Sohn, Donggeun Jung, Jinhyo Boo, Seounghoon Jeong, Sanghee Ko Park, J. Kor. Vac. Soc., Vol.14, No.4, 196 (2005)

Cited by

  1. Fabrication of Organic Field-Effect Transistors with Low Gate Leakage Current by a Functional Polydimethylsiloxane Layer vol.18, pp.2, 2009, https://doi.org/10.5757/JKVS.2009.18.2.147
  2. Fabrication of Micron-sized Organic Field Effect Transistors vol.20, pp.1, 2011, https://doi.org/10.5757/JKVS.2011.20.1.063