• 제목/요약/키워드: 적층 오토인코더

검색결과 3건 처리시간 0.016초

CAPTCHA에 사용되는 숫자데이터를 자동으로 판독하기 위한 Autoencoder 모델들의 특성 연구 (A Study on the Characteristics of a series of Autoencoder for Recognizing Numbers used in CAPTCHA)

  • 전재승;문종섭
    • 인터넷정보학회논문지
    • /
    • 제18권6호
    • /
    • pp.25-34
    • /
    • 2017
  • 오토인코더(Autoencoder)는 입력 계층과 출력 계층이 동일한 딥러닝의 일종으로 은닉 계층의 제약 조건을 이용하여 입력 벡터의 특징을 효과적으로 추출하고 복원한다. 본 논문에서는 CAPTCHA 이미지 중 하나의 숫자와 자연배경이 혼재된 영역을 대상으로 일련의 다양한 오토인코더 모델들을 적용하여 잡음인 자연배경을 제거하고 숫자 이미지만을 복원하는 방법들을 제시한다. 제시하는 복원 이미지의 적합성은 오토인코더의 출력을 입력으로 하는 소프트맥스 함수를 활성화 함수로 사용하여 검증하고, CAPTCHA 정보를 자동으로 획득하는 다른 방법들과 비교하여, 본 논문에서 제시하는 방법의 우수함을 검증하였다.

해외지수와 투자자별 매매 동향에 따른 딥러닝 기반 주가 등락 예측 (Deep Learning-Based Stock Fluctuation Prediction According to Overseas Indices and Trading Trend by Investors)

  • 김태승;이수원
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권9호
    • /
    • pp.367-374
    • /
    • 2021
  • 주가 예측은 경제, 통계, 컴퓨터 공학 등 여러 분야에서 연구되는 주제이며, 특히 최근에는 기본적 지표나 기술적 지표 등 다양한 지표로부터 인공지능 모델을 학습하여 주가의 변동을 예측하는 연구들이 활발해 지고 있다. 본 연구에서는 S&P500 등의 해외지수, 과거 KOSPI 지수, 그리고 KOSPI 투자자별 매매 동향으로부터 KOSPI의 등락을 예측하는 딥러닝 모델을 제안한다. 제안 모델은 주가 등락 예측을 위하여 비지도 학습 방법인 적층 오토인코더를 이용하여 잠재변수를 추출하고, 추출된 잠재변수로부터 시계열 데이터 학습에 적합한 LSTM 모델로 학습하여 당일 시가 대비 종가의 등락을 예측하며, 예측된 값을 기반으로 매수 또는 매도를 결정한다. 본 연구에서 제안하는 모델과 비교 모델들의 수익률 및 예측 정확도를 비교한 결과 제안 모델이 비교 모델들 보다 우수한 성능을 보였다.

회전수가 변하는 기기의 고장진단에 있어서 특성 기반 분류와 합성곱 기반 알고리즘의 예측 정확도 비교 (Comparison of Prediction Accuracy Between Classification and Convolution Algorithm in Fault Diagnosis of Rotatory Machines at Varying Speed)

  • 문기영;김형진;황세윤;이장현
    • 한국항해항만학회지
    • /
    • 제46권3호
    • /
    • pp.280-288
    • /
    • 2022
  • 본 연구는 정상 가동 중에도 회전수가 변하는 기기의 이상 및 고장 진단 방안을 다루고 있다. 회전수가 변함에 따라 비정상적 시계열 특성을 내포한 센서 데이터에 기계학습을 적용할 수 있는 절차를 제시하고자 하였다. 기계학습으로는 k-Nearest Neighbor(k-NN), Support Vector Machine(SVM), Random Forest을 사용하여 이상 및 고장 진단을 수행하였다. 또한 진단 정확성을 비교할 목적으로 이상 감지에 오토인코더, 고장진단에는 합성곱 기반의 Conv1D도 추가로 이용하였다. 비정상적 시계열로부터 통계 및 주파수 속성으로 구성된 시계열 특징 벡터를 추출하고, 추출된 특징 벡터에 정규화 및 차원 축소 기법을 적용하였다. 특징 벡터의 선택과 정규화, 차원 축소 여부에 따라 달라지는 기계학습의 진단 정확도를 비교하였다. 또한, 적용된 학습 알고리즘 별로 초매개변수 최적화 과정과 적층 구조를 설명하였다. 최종적으로 기존의 심층학습과 비교하여, 기계학습도 가변 회전기기의 고장을 정확하게 진단할 수 있는 절차를 제시하였다.