• Title/Summary/Keyword: 적층코어

Search Result 62, Processing Time 0.043 seconds

Thermal Pattern Comparison between 2D Multicore Processors and 3D Multicore Processors (2차원 구조와 3차원 구조에 따른 멀티코어 프로세서의 온도 분석)

  • Choi, Hong-Jun;Ahn, Jin-Woo;Jang, Hyung-Beom;Kim, Jong-Myon;Kim, Cheol-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.9
    • /
    • pp.1-10
    • /
    • 2011
  • Unfortunately, in current microprocessors, increasing the frequency causes increased power consumption and reduced reliability whereas it improves the performance. To overcome the power and thermal problems in the singlecore processors, multicore processors has been widely used. For 2D multicore processors, interconnection is regarded as one of the major constraints in performance and power efficiency. To reduce the performance degradation and the power consumption in 2D multicore processors, 3D integrated design technique has been studied by many researchers. Compared to 2D multicore processors, 3D multicore processors get the benefits of performance improvement and reduced power consumption by reducing the wire length significantly. However, 3D multicore processors have serious thermal problems due to high power density, resulting in reliability degradation. Detailed thermal analysis for multicore processors can be useful in designing thermal-aware processors. In this paper, we analyze the impact of workload distribution, distance to the heat sink, and number of stacked dies on the processor temperature. We also analyze the effects of the temperature on overall system performance. Especially, this paper presents the guideline for thermal-aware multicore processor design by analyzing the thermal problems in 2D multicore processors and 3D multicore processors.

Thermal Analysis of 3D Multi-core Processors with Dynamic Frequency Scaling (동적 주파수 조절 기법을 적용한 3D 구조 멀티코어 프로세서의 온도 분석)

  • Zeng, Min;Park, Young-Jin;Lee, Byeong-Seok;Lee, Jeong-A;Kim, Cheol-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.11
    • /
    • pp.1-9
    • /
    • 2010
  • As the process technology scales down, an interconnection has became a major performance constraint for multi-core processors. Recently, in order to mitigate the performance bottleneck of the interconnection for multi-core processors, a 3D integration technique has drawn quite attention. The 3D integrated multi-core processor has advantage for reducing global wire length, resulting in a performance improvement. However, it causes serious thermal problems due to increased power density. For this reason, to design efficient 3D multi-core processors, thermal-aware design techniques should be considered. In this paper, we analyze the temperature on the 3D multi-core processors in function unit level through various experiments. We also present temperature characteristics by varying application features, cooling characteristics, and frequency levels on 3D multi-core processors. According to our experimental results, following two rules should be obeyed for thermal-aware 3D processor design. First, to optimize the thermal profile of cores, the core with higher cooling efficiency should be clocked at a higher frequency. Second, to lower the temperature of cores, a workload with higher thermal impact should be assigned to the core with higher cooling efficiency.

Analysis on the Performance and Temperature of the 3D Quad-core Processor according to Cache Organization (캐쉬 구성에 따른 3차원 쿼드코어 프로세서의 성능 및 온도 분석)

  • Son, Dong-Oh;Ahn, Jin-Woo;Choi, Hong-Jun;Kim, Jong-Myon;Kim, Cheol-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.6
    • /
    • pp.1-11
    • /
    • 2012
  • As the process technology scales down, multi-core processors cause serious problems such as increased interconnection delay, high power consumption and thermal problems. To solve the problems in 2D multi-core processors, researchers have focused on the 3D multi-core processor architecture. Compared to the 2D multi-core processor, the 3D multi-core processor decreases interconnection delay by reducing wire length significantly, since each core on different layers is connected using vertical through-silicon via(TSV). However, the power density in the 3D multi-core processor is increased dramatically compared to that in the 2D multi-core processor, because multiple cores are stacked vertically. Unfortunately, increased power density causes thermal problems, resulting in high cooling cost, negative impact on the reliability. Therefore, temperature should be considered together with performance in designing 3D multi-core processors. In this work, we analyze the temperature of the cache in quad-core processors varying cache organization. Then, we propose the low-temperature cache organization to overcome the thermal problems. Our evaluation shows that peak temperature of the instruction cache is lower than threshold. The peak temperature of the data cache is higher than threshold when the cache is composed of many ways. According to the results, our proposed cache organization not only efficiently reduces the peak temperature but also reduces the performance degradation for 3D quad-core processors.

Iron Loss Comparison between Soft Magnetic Composite Core and Laminated Steel Core in Axial Flux Machine (축방향 자속형 전동기에서 연자성복합체 코어와 적층 전기강판 코어의 철손 비교)

  • Lee, Minhyeok;Nam, Kwanghee
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.217-218
    • /
    • 2015
  • Two axial flux permanent magnet (AFPM) machines using soft magnetic composite (SMC) and lamination steel are studied. Generally stator cores of AFPM machines are manufactured using SMC because AFPM machines need 3 dimensional core structures. However, SMC cores have very disadvantages in magnetic properties. Especially permeability value is much lower than that of lamination steel, so magnetic field density is also lower. In terms of core losses, SMC cores have much larger loss values than lamination steel cores because SMC core can't be laminated. In this study, AFPM machine was designed using laminated steel, and iron losses in two machines using SMC and laminated steel were studied. Simulations were carried out by a commercial 3-D FEM tool.

  • PDF

A Study on the Impact and Vibration acting on the Laminated Composite Honeycomb Core Type Sandwich Plate Structure (복합적층 하니콤 코어형 샌드위치 판구조물에 미치는 충격과 진동에 관한 연구)

  • Hong, Do-Kwan;Seo, Jin;Ahn, Chan-Woo
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.616-622
    • /
    • 2001
  • In this paper, we analyzed the laminated composite sandwich plate structure of honeycomb core with changing values of the designing parameters. As a result, in designing parameters of that, the more height and thickness of the laminated composite plate's core, the more increase of natural frequency. The laminated angle has the maximum value when the plate of honeycomb core is join to opposite direction. This paper shows that the natural frequency of CFRP is higher than that of GFRP, and also impact strength marks maximum value in case of antisymmetry than symmetry of core. Also it shows that the mode shapes are various along with the angle-ply of laminated composite plate.

  • PDF

Optimum Design of the Laminated Composite Sandwich Plate Structure of Truss Core considering Vibration Characteristics (복합적층 트러스 코어형 샌드위치 판구조물의 진동특성을 고려한 최적설계)

  • Jung, Suok-Mo;Hong, Do-Kwan;Ahn, Chan-Woo
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.703-709
    • /
    • 2001
  • In this paper, we analyzed the laminated composite sandwich plate structure of truss core with changing values of the designing parameters. As a result, in designing parameters of that, the more height and thickness of the laminated composite plate's core, the more increase of natural frequency. In this type of structure, in the case of applying core of the laminated composite plate and antisymmetric stacking, natural frequency has high value and we calculated the optimum angle-ply making natural frequency maximum. Natural frequency of CFRP is higher than that of GFRP. Both are materials of the laminated composite plate. The mode shapes are various along with the angle-ply of the laminated composite plate.

  • PDF

Optimum Design of the Laminated Composite Sandwich Plate Structure of Honeycomb Core considering Vibration Characteristics (복합적층 하니콤 코어형 샌드위치 판무구조물의 진동특성을 고려한 최적설계)

  • Seo, J.;Hong, D. K.;Ahn, C. W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.710-715
    • /
    • 1997
  • This paper deals with the analysis of the optimum value of honeycomb core considering variable design parameter. As thickness and height of core rises in design parameter, natural frequency of laminated composite plate increases. The angle-phy has the maximum value when the plate of honeycomb core join to opposite direction. This paper shows that the natural frequency of CFRP was higher than that of GFRP and mode shapes were various at angle-ply.

  • PDF

Analysis on the negative factors for 3D GPU performance (3차원 구조 GPU의 성능 감소 요인들에 대한 분석)

  • Jeon, Hyung-Gyu;Son, Dong-Oh;Kim, Cheol-Hong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06a
    • /
    • pp.200-202
    • /
    • 2012
  • 공정기술의 발달로 인해 GPU는 빠르게 발전하고 있다. GPU는 영상처리뿐만 아니라 한 번에 많은 양의 데이터를 처리하는 범용 작업에도 많이 쓰이고 있다. 한편, 최근에는 3차원으로 코어를 적층하는 3차원 CPU구조에 대해 많은 연구가 수행되고 있다. 3차원 구조는 코어를 수직으로 적층시켜 내부 연결망의 길이를 크게 줄여주어 성능을 크게 개선하는 장점을 가지고 있다. 이를 반영하여 GPU에도 3차원 구조를 적용하여 GPU의 성능을 향상시키려는 선행연구에 맞춰 본 논문에서는 3차원 구조 GPU의 성능 향상을 저해하는 요소들에 대해서 분석해 보고자한다. 본 논문에서는 선행연구에서 밝힌 메모리 인터페이스에서 발생하는 병목현상 이외에도 주 메모리 큐 용량과 네트워크 방식에 따른 3차원 GPU의 성능향상을 실험을 통하여 알아본다. 실험 결과 주 메모리 큐 용량에 따른 3차원 GPU의 IPC는 가장 큰 사이즈와 가장 작은 사이즈의 차이가 4 미만으로 주 메모리 큐 용량은 3차원 GPU의 성능에 큰 영향을 미치지 않는 것으로 분석된다. 주 메모리로의 읽기 또는 쓰기 요청들을 순서대로 저장하는 큐의 역할이 3차원 구조 GPU의 동작에는 큰 영향을 미치지 않기 때문으로 분석된다. 반면 네트워크 방식에 따른 실험에서는 fly 네트워크 방식에 비해서 crossbar 네트워크 방식이 더 빠른 데이터 통신을 가능하게 해주어 crossbar네트워크 방식에서 IPC수치가 약 14 증가함을 알 수 있다. 두 가지 실험을 통하여 3차원 GPU의 성능에 네트워크 방식 차이가 주 메모리 큐 용량 변화보다 더 큰 영향을 주는 것을 확인할 수 있다.

Structure Test and Vibration Analysis for Small Aircraft (소형항공기(반디호) 몰드의 구조시험 및 진동해석)

  • Jung, Do-Hee;Kim, Jin-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.692-697
    • /
    • 2005
  • A canard type aircraft, which has good wing stall and stall/spin proof characteristics, is being developed. The previous first and second prototypes, having full depth core sandwich type wing and fixed landing gear, was built for test flights. Newly developing Firefly will be equipped with retractable landing gear and conventional foam core sandwich laminate for wing and fuselage. For manufacturing, composite material process has been studied including coupon tests. Wet lay-up onto foam core with glass fabric using lay-up mold has been chosen, and composite material parts are cured under room temperature and atmospheric pressure condition. In general, molded parts show so good surface smoothness and standardized quality that are best in mass production. In this study, we present the mold technology and development status for small aircraft firefly.

  • PDF

Sound-Insulation Design of Aluminum Extruded Panel in Next-Generation High-Speed Train (차세대 고속철도 차량용 알루미늄 압출재의 차음 설계)

  • Kim, Seock-Hyun;Seo, Tae-Gun;Kim, Jeong-Tae;Song, Dal-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.5
    • /
    • pp.567-574
    • /
    • 2011
  • Aluminum extruded panels are widely used instead of corrugated steel panels for weight reduction in high-speed trains. Of the layers in the train body, it makes the largest contribution to the sound insulation. However, compared with that of a flat panel with the same weight, the TL of the aluminum extruded panel is remarkably lower in the local resonance frequency band. We study aluminum extruded panels for next-generation 400-km/h trains. We investigate the problem of sound insulation and propose a practical method to improve the sound-insulation performance. The local resonance frequency region is increased by a modification of the core structure, and urethane foam is placed in the core. The effect on the sound insulation is verified by experiments. Finally, the improvement for the entire sound-transmission loss is estimated for the layered floor panels of express trains.