• Title/Summary/Keyword: 적층복합재료

Search Result 845, Processing Time 0.028 seconds

Mechanical properties by resin injection method of orthdontic acrylic resin (교정용 레진장치의 레진주입방법에 따른 기계적 특성)

  • Jo, Jeong-Ki
    • Journal of Digital Convergence
    • /
    • v.18 no.4
    • /
    • pp.341-346
    • /
    • 2020
  • Polymethyl methacrylate (PMMA), a self-curing resin mainly used in removable orthodontic appliances, is an acrylic resin mainly used in the field of modern dentistry. As an advantage, it has been used for a long time as a material for orthodontic devices in dentistry due to its color and volume, tissue affinity, and stability. The production of PMMA can be divided into self-polymerization method and thermal polymerization method according to activation method. Self-curing resins have long been used as orthodontic devices. The resin injection method is largely divided into a sprinkle-on method and a mixing method. In this study, we intend to test the mechanical properties according to the resin injection method of the orthodontic device, such as strength, modulus of elasticity, and surface roughness. There was no significant difference in strength as a result of three-point bending strength test on rectangular specimens (1.4 × 3.0 × 19.0 mm) of orthodontic PMMA. There was also no significant difference in hardness. There was no significant difference in surface roughness. It was confirmed that the orthodontic PMMA had no significant difference in mechanical properties according to the resin injection method of the orthodontic device.

An overview of acoustic and vibration research activities for the structural development of Korean space launchers (위성 발사체 구조 개발을 위한 음향/진동 연구)

  • Park, Soon-Hong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.342-350
    • /
    • 2020
  • Acoustic and vibration research activities for the structural development of Korean space launch vehicles are introduced in this paper. Various dynamic loads exerted on a launch vehicle during its operation are summarized. The acoustical design method of payload fairings which protect satellites from harsh launch environment was reviewed. Several acoustic research activities were performed to enhance the analytical prediction ability during the development period of the Naro and the Nuri launcher. Specifically, the following research activities are reviewed: a test and vibro-acoustic analysis of composite cylinders whose layup properties are varied, a research on low-frequency acoustic load reduction by an acoustic resonator array and an acoustic test on the cylinder part of the Naro payload fairing. A vibro-acoustic analysis result for the Nuri launcher was introduced and predicted acoustic and vibration levels and measured ones are shown to be in a good agreement.

Multi-stage Compression Molding Technology of Fast Curing CF/Epoxy Prepreg (속경화용 탄소섬유/에폭시 프리프레그의 다단 압축 성형기술)

  • Kwak, Seong-Hun;Mun, Ji-Hun;Hong, Sang-Hwui;Kwon, Soon-Deok;Kim, Byung-Ha;Kim, Tae-Yong
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.269-276
    • /
    • 2021
  • PCM (Prepreg Compression Molding) process is a high-speed molding technology that can manufacture high-quality CFRP (Carbon Fiber Reinforced Plastic) parts. Compared to the autoclave process, it generates less waste and can significantly reduce cycle time, so various studies are being conducted in the aerospace and automobile industries. In this study, in order to improve the quality of the PCM process, a molding method was developed to increase the compression pressure of the press step by step according to the curing behavior of the prepreg. It was confirmed that this multi-stage compression molding technology is a good means to produce high-quality CFRP products and shorten cycle times. And, the laminated prepreg at room temperature was immediately put into the mold and preheated and molded at the same time, so that it could be molded without a separate preheating process. In addition, as a result of applying the same process conditions optimized for flat plate molding to three-dimensional shapes, a product similar to a flat plate in appearance could be made without the process of establishing process conditions.

Study on the Mechanical Properties of Hybridized Carbon Fiber Composite According to Stacking Structure (하이브리드 탄소섬유 적층구조에 따른 복합재료의 기계적 특성 연구)

  • Koo, Seon Woong;Oh, Woo Jin;Won, Jong Sung;Lee, Ha Ram;Youn, Ju Young;Lee, Seung Goo
    • Textile Coloration and Finishing
    • /
    • v.30 no.4
    • /
    • pp.313-320
    • /
    • 2018
  • As carbon fiber reinforced composites(CFRP) are widely used in aerospace, automobile, marine, and sports goods applications, they have been studied extensively by various researchers. However, CFRP have been pointed out because of machining problems such as delamination and burr phenomenons. Especially, hole machining process, drilling, has non-smooth features on inlet and outlet surfaces of drilled hole. This kind of machining problem can be controlled to some extent by using high modulus pitch-CF, which has considerable effects on fracture behavior of composite compared with only PAN CF composite. Therefore, PAN and pitch hybridized CF composites were prepared having high strength and modulus. The results demonstrate that the hybrid CFRP specimens with pitch CF offer the good potential to enhance modulus as well as strength properties. Dynamic mechanical, flexural, and impact properties were measured and analyzed. Morphological surface of the composites were also observed by IFS-28, canon after hole machining.

Wrinkling of Graphene Papers Placed on Stretchable Adhesive Films (신축성 접착 필름 위에 놓인 그래핀 종이의 주름 생성)

  • Kim, Sang-Yun;Jeong, Myeong Hee;Suk, Ji Won
    • Composites Research
    • /
    • v.34 no.2
    • /
    • pp.108-114
    • /
    • 2021
  • Graphene flakes are generally mass-produced by converting graphene oxide into reduced graphene oxide using chemical or thermal reduction. These graphene flakes can be stacked to form a free-standing graphene paper, which can be used for various applications. However, a graphene paper lacks stretchability, which hinders its application in stretchable devices. In this work, we introduced wrinkles in a graphene paper to make it stretchable. A graphene paper fabricated by vacuum-filtering a graphene dispersion was placed on a pre-stretched adhesive film. When the pre-stretched adhesive film returned to the original state, the graphene paper was wrinkled. The effect of the pre-stretching and wet condition of the graphene papers was experimentally investigated by using scanning electron microscopy. In addition, we observed the change of the period of the wrinkles in the graphene paper depending on the pre-stretching.

Analysis of Mechanical Curing Properties Based on Vacuum Pressure of UV-Cured Composites (UV 경화형 복합재료의 진공압에 따른 기계적 경화 특성 분석)

  • Jang, Yong-Soo;Kim, Jeong-Keun;Go, Sun-Ho;Kim, Hong-Gun;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.87-97
    • /
    • 2020
  • In this study, a UV-cured GFRP molding is made using a combination of hand lay-up and resin transfer molding, and its properties are analyzed. The molded plates produced using various vacuum pressures (0 mmHg, -450 mmHg, and -760 mmHg) are examined via a comparison of hand lay-up molding and resin transfer molding. Tests are conducted by processing tensile specimens (ASTM D-5083), flexural test specimens (ASTM D-790), and ILSS test specimens (ASTM D-2344) according to each ASTM standard with a molded plate. Similarly, the UV-cured GFRP molding is compared against GFRP using epoxy. It was confirmed that the mechanical strengths of all the specimens increased when the vacuum pressure was increased and when UV curing was applied. This is believed to be because as the vacuum pressure increases, the pores of the cured specimen are removed, thereby reducing defects, and the bonding force between the glass fiber and the resin is stronger than that of the epoxy resin. It is expected that if resin transfer molding methods and UV-cured resins are used for molding GFRP composites in industry, products with better mechanical properties and faster curing time will be produced.

UV-Curing System for the Filament Winding of Large Diameter Pipe (대구경 파이프용 필라멘트 와인딩을 위한 UV 경화시스템)

  • Choi, Jae-Wan;Kim, Se-Il;Chung, Yong-Chan;Chun, Byaung-Chul
    • Clean Technology
    • /
    • v.16 no.4
    • /
    • pp.245-253
    • /
    • 2010
  • Optimum conditions for UV-radiated photopolymerization of unsaturated polyester that could be used as protecting layer of large diameter pipe were investigated in this paper. UV photopolymerization method was selected to solve the problems, arising when thermal polymerization by organic peroxide was used, such as the instability of peroxide initiator, the evolution of volatile organic compound, and thermal deformation of product. Two of the photo-initiators (Irgacure 819 and Darocure 1173) well known for its penetrating ability deep into the polymer layer were selected, and the optimum conditions for photopolymerization (1.5 phr initiator content, 1:1.2 initiator ratio, Ga lamp for UV source) were found from the thermal and mechanical test results of the resultant UP polymers. In addition, composite materials containing UP polymer and glass fiber were tested for hardness, impact strength, and flexural strength to find that the impact strength of composite significantly improved.

Developmnet of Vibration and Impact Noise Damping Wood-based Composites (II) -The Influence of the Degree of Crosslinking on the Damping Properties of Interpenetrating Polymer Networks- (진동.충격음 흡수성능을 지니는 목질계 복합재료의 개발(II) -가교밀도가 상호침투망목고분자의 진동흡수성능에 미치는 영향-)

  • 이현종
    • Journal of Korea Foresty Energy
    • /
    • v.17 no.1
    • /
    • pp.47-55
    • /
    • 1998
  • In the search for broadband damping composites, it is desirable to have polymers with a broad and high loss region, covering the entire temperature and frequency range of interest. Interpenetrating polymer networks, IPN's, are materials composed of two or more crosslinked polymers intimately and irrevocably interwinded. The resulting distribution of microenviron-ments can result in a materials with a high mechanical loss broad end over that of either polymer component alone. In this study, several series of copolymer, crosslinked copolymer and copolymer/copolymer IPN's were synthesized for possible use as broadband damping materials. Then their dynamic tensile properties were measured and compared with the damping properties of sandwich composites. Dynamic mechanical analysis showed that the temperature of loss peak may be varied over a wide temperature range with formulation. The compatibility of IPN`s was depended on the compatibility of A and B polymers as well as crosslink density. The damping factor(tan ${\delta}_c$) of composites became greater when a polymer of approximate storage module(E`) range of 5X10$^7$ to 10$^9$ dyne/cm$^2$ and large tan ${\delta}$ at the same time was used. The damping properities of poly (2-EHA80-co-St20)/poly(2-EHA20-co-St80) IPN`s crosslinked with 3%-DEGDM were relatively better over a broad temperature range.

  • PDF

Vibration and Impact Transmission for each Variable of Woodpile Metamaterial (우드파일 메타물질의 변수 별 진동 및 충격에 끼치는 영향)

  • Ha, Young sun;Hwang, Hui Y.;Cheon, Seong S.
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.155-160
    • /
    • 2021
  • Metamaterials are complexes of elements that can create properties not found in naturally occurring materials, such as changing the direction of forces, creating negative stiffness, or altering vibration and impact properties. In the case of wood pile metamaterials that are easy to manufacture and have excellent performance in reducing vibration and shock in the vertical direction, basic research on variables affecting shock transmission is needed to reduce shock. Although research on impact reduction according to geometrical factors is being conducted recently, studies on the effect of material variables on impact reduction are insufficient. In this paper, finite element analysis was carried out by variablizing the geometrical properties (lamination angle, diameter, length) and material properties (modulus of elasticity, specific gravity, Poisson's ratio) of wood pile cylinders. Through finite element analysis, the shape of the wooden pile cylinder delivering impact was confirmed, and the effect of each variable on the reduction of impact force and energy was considered through main effect diagram analysis, and frequency band analysis was performed through fast Fourier transform. proceeded In order to reduce the impact force and vibration, it was found that the variables affecting the contact area of t he cylinder have a significant effect.

The Study on Physical and Mechanical Properties of Composite Board, Using Byproduct of Plywood for Core Layer (합판 정재단 부산물을 중층 Core로 이용한 복합보드의 물리·기계적 성질에 관한 고찰)

  • Choe, Song-Kyu;Pi, Duck Won;Kang, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.490-496
    • /
    • 2013
  • The board using recycled wood waste chip tends to decrease in terms of physical and mechanical properties. The reasons are notably different shape of chips, components of used adhesive and impurity content, which bring the irregular quality and downgrading of board. More over, the board has higher emissivity of formaldehyde than regular board, because recycled chip contains adhesives that were used to make previous products. This low quality of products weakens the price and quality competitiveness, and it led to bringing the issue of problem in Korean board industry. For these reason, in this study, boards using byproducts of plywood were made to evaluate physical and mechanical properties according to manufacturing conditions. As a result, The board was consists of 4~16 mesh chips for core layer and veneer on both face and they were combined using EMDI, and its' bending strength was 57.7 $N/mm^2$ which is 215% higher than that of OSB (26.8 $N/mm^2$). Moreover, the emissivity of formaldehyde was 0.7 ppm, this board seems to substitute OSB for rated sheathing.