DOI QR코드

DOI QR Code

An overview of acoustic and vibration research activities for the structural development of Korean space launchers

위성 발사체 구조 개발을 위한 음향/진동 연구

  • Park, Soon-Hong (LV Structures Department, Korea Aerospace Research Institute)
  • 박순홍 (한국항공우주연구원 한국형발사체개발사업본부)
  • Received : 2020.06.17
  • Accepted : 2020.07.20
  • Published : 2020.07.31

Abstract

Acoustic and vibration research activities for the structural development of Korean space launch vehicles are introduced in this paper. Various dynamic loads exerted on a launch vehicle during its operation are summarized. The acoustical design method of payload fairings which protect satellites from harsh launch environment was reviewed. Several acoustic research activities were performed to enhance the analytical prediction ability during the development period of the Naro and the Nuri launcher. Specifically, the following research activities are reviewed: a test and vibro-acoustic analysis of composite cylinders whose layup properties are varied, a research on low-frequency acoustic load reduction by an acoustic resonator array and an acoustic test on the cylinder part of the Naro payload fairing. A vibro-acoustic analysis result for the Nuri launcher was introduced and predicted acoustic and vibration levels and measured ones are shown to be in a good agreement.

본 논문은 우주 발사체 구조 개발을 위한 음향/진동 연구의 개요와 음향 해석 및 시험 기술의 국내 현황을 소개하고 있다. 먼저 발사체 운용중에 받는 동하중에 대하여 요약, 정리하고 위성체를 보호하기 위한 페이로드 페어링의 음향 하중 저감 설계 및 해석 방법을 소개하였다. 나로호부터 현재 한국형발사체 페이로드 페어링까지 음향 보호 시스템의 최적 설계를 위해 구조 진동-음향 연성 해석 성능의 향상을 도모하였으며, 이를 위한 연구 활동을 살펴보았다. 구체적으로 적층 구조가 다른 복합재료 실린더에 대한 음향 하중 저감 성능 해석 및 검증 시험, 음향 공명기 배열을 적용하기 위한 인클로저 음향 시험, 나로호 페어링 실린더부에 대한 음향 가진 시험 및 해석 등의 결과를 소개하였다. 현재 개발중인 한국형 발사체(누리호)의 페이로드 페어링 음향 하중 저감 해석 및 시험 결과를 소개하였으며 해석 결과가 실험 결과를 잘 예측함을 보였다.

Keywords

References

  1. H. Himelblau, J. E. Manning, D. L. Kern, A. G. Piersol, and S. Rubin, Dynamic environmental criteria, NASA Tech. Rep., HDBK-7005, 2001.
  2. S.-H. Park, S.-H. Seo, J.-H. Han, and C.-W. Gong, "Acoustic and vibration mitigation, test and evaluation technology for space launch vehicle"(in Korean), Current Industrial and Technological Trends in Aerospace, 12, 115-126 (2014).
  3. S.-H. Park, C.-W. Kong, Y.-S. Jang, and Y. Y. Moo, "Acoustic loads reduction of composite plates for nose fairing structure" (in Korean), Composite Research, 17, 15-22 (2004).
  4. S.-H. Park, J. H. Han, S. H. Suh, and H. W. Jang, "Reduction of acoustic loadings by stacking variation of composite sandwich structures" (in Korean), Proc. KSAS Fall Conf. 1251-1253 (2015).
  5. S.-H. Park and S.-H. Seo, "An empirical acoustic impedance model for the design of acoustic resonator with extended neck at a high pressure environment" (in Korean), Trans. Korean Soc. Noise Vib. Eng. 22, 1199-1205 (2012). https://doi.org/10.5050/KSNVE.2012.22.12.1199
  6. S.-H. Park and S.-H. Seo, "Low-frequency noise reduction in an enclosure by using a helmholtz resonator array" (in Korean), Trans. Korean Soc. Noise Vib. Eng. 22, 756-762 (2012). https://doi.org/10.5050/KSNVE.2012.22.8.756
  7. S.-H. Park, "A design method of micro-perforated panel absorber at high sound pressure environment in launcher fairings," J. Sound Vib. 332, 521-535 (2013). https://doi.org/10.1016/j.jsv.2012.09.015
  8. S.-H. Park, "Acoustic properties of micro-perforated panel absorbers backed by Helmholtz resonators for the improvement of low-frequency sound absorption," J. Sound Vib. 332, 4859-4911 (2013).
  9. S.-H. Park, S. H. Suh, and J. H. Han, "Comparison of acoustic test and vibro-acoustic analysis results of a composite cylinder under external acoustic loading" (in Korean), Proc. Proc. KSAS Fall Conf. 1180-1183 (2014).