• Title/Summary/Keyword: 적층방향

Search Result 395, Processing Time 0.031 seconds

Residual Metal Evolution with Pattern Density in Cobalt Nickel Composite Silicide Process (코발트 니켈 복합 실리사이드 공정에서 하부 형상에 따른 잔류 금속의 형상 변화)

  • Song, Oh-Sung;Kim, Sang-Yeop
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.3
    • /
    • pp.273-277
    • /
    • 2005
  • We prepared $0.25\~l.5um$ poly silicon gate array test group with $SiO_2$ spacers in order to employ NiCo composite salicide process from 15nm Ni/15nm Co/poly structure. We investigate the residual metal shape evolution by varying the rapid thermal silicide anneal temperature from $700^{\circ}C\;to\;1100^{\circ}C$. We observed the residual metals agglomerated into maze type and line type on $SiO_2$ field and silicide gate, respectively as temperature increased. We propose that lower silicide temperature would be favorable in newly proposed NiCo salicide in order to lessen the agglomeration causing the leakage and scum formation.

  • PDF

Developing Practical Recycling methods of FRP Boats (FRP선박의 실용적 재활용 방법 연구)

  • Yoon, Koo-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.3
    • /
    • pp.167-172
    • /
    • 2007
  • Since 1990s, these many researchers have been fully involved in developing recycling methods for FRP boats. There are four basic classes of recycling covered in the literature. the first is "Mechanical recycling" which involves shredding and grinding of the scrap FRP in a new product. Despite of the safety hazards, mechanical recycling is one of the simpler and more technically proven methods. Recent researchers should be more interested in these methods. It is fact that most of FRP wastes are depended on incineration or reclamation. Because it Is made up of reinforced fiber glass, it is very difficult to break into pieces. By the disposing of waste FRP this way, it also occurs secondary problem such as air pollution and unacceptable noise. This study is to propose a new method which is efficient and environment friendly waste FRP regenerating.

  • PDF

An Estimation of Shear Capacity of Hexagonal Masonry Walls Under Cyclic Loading (반복하중을 받는 육각형 블록 벽체 전단내력평가)

  • Chang, Gug-Kwan;Seo, Dae-Won;Han, Tae-Kyoung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.205-214
    • /
    • 2010
  • Masonry structures have been used throughout the world for the construction of residential buildings. However, from a structural point of view, the masonry material is characterized by a very low tensile strength. Moreover, the bearing and shear capacity of masonry walls have been found to be vulnerable to earthquakes. In this study, to improve the seismic performance of masonry walls, hexagonal blocks were developed and six masonry walls made with hexagonal block were tested to failure under reversed cyclic lateral loading. This paper focuses on an experimental investigation of different types of wall with hexagonal blocks, i.e. walls with different hexagonal blocks and with different reinforcing bar arrangements, subjected to applied cyclic loads. The cracking, damage patterns and hysteretic feature were evaluated. Results from the hexagonal masonry wall were shown more damage reduction and less brittle failure in comparison to the existing rectangular masonry walls.

An Experimental Evaluation of Mechanical Properties and Failure Processing in Composite Laminate (복합재료의 기계적 성질 및 파손과정 평가)

  • J.W.,Ong;K.H.,Song;R.W.,Sung;B.S.,Shim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.4
    • /
    • pp.58-68
    • /
    • 1988
  • This paper is concerned with mechanical properties of unidirectional laminate $[(0^{\circ})_{8T},\;(90^{\circ})_{8T}]$, composed of angle plies $[({\pm}15^{\circ})_{2S},\;({\pm}30^{\circ})_{2S},\;({\pm}45^{\circ})_{2S},\;({\pm}60^{\circ})_{2S},\;({\pm}75^{\circ})_{2S}$ and laminate $[(9^{\circ}/90^{\circ})_{2S},\;(90^{\circ}/{\pm}45^{\circ}/0^{\circ})_S,\;({\pm}45^{\circ}/0^{\circ}/{\pm}90^{\circ})_S,\;({\pm}45^{\circ}/90^{\circ}/0^{\circ})_S,\;(0^{\circ}/90^{\circ}/{\pm}45^{\circ})_S,\;(90^{\circ}/0^{\circ}/{\pm}45^{\circ})_S]$ under the condition of uniform strain tension. Also, experimental investigation was conducted $[10]_{8T}$, off-axis tensile test for intralaminar shear characterization. The experimental data on the failure criterion of tensor polynomial were compared with those from the classical laminate theory. Acoustic Emission experiments have been carried out to investigate the changes of the amplitude distributions of Acoustic Emission monitored during failure of tensile tests on Carbon/Epoxy composites.

  • PDF

Experimental Testing of Curved Aluminum Honeycomb/CFRP Sandwich Panels (곡면형상의 알루미늄 하니콤/CFRP 샌드위치 패널에 관한 실험적 연구)

  • Roy, Rene;Park, Yong-Bin;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.85-90
    • /
    • 2013
  • This paper presents the fabrication and 3-point flexion testing of carbon fiber reinforced polymer (CFRP) composite face/aluminum honeycomb core sandwich panels. Specimen sandwich panels were fabricated with three honeycomb types (3.18 mm, 4.76 mm, and 6.35 mm cell size) and three panel radii (flat, r = 1.6 m, r = 1.3 m). The curved sandwiches were fabricated normally with the core in the W-direction. The tensile mechanical properties of the CFRP $2{\times}2$ twill fabric face laminate were evaluated (modulus, strength, Poisson's ratio). The measured values are comparable to other CFRP fabric laminates. The flat sandwich 3-point flexion test core shear strength results were 11-30% lower than the manufacturer published data; the test set-up used may be the cause. With a limited sample size, the 1.3 meter panel curvature appeared to cause a 0.8-3.8% reduction in ultimate core shear strength compared to a flat panel.

Image Calibration Techniques for Removing Cupping and Ring Artifacts in X-ray Micro-CT Images (X-ray micro-CT 이미지 내 패임 및 동심원상 화상결함 제거를 위한 이미지 보정 기법)

  • Jung, Yeon-Jong;Yun, Tae-Sup;Kim, Kwang-Yeom;Choo, Jin-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.11
    • /
    • pp.93-101
    • /
    • 2011
  • High quality X-ray computed microtomography (micro-CT) imaging of internal microstructures and pore space in geomaterials is often hampered by some inherent noises embedded in the images. In this paper, we introduce image calibration techniques for removing the most common noises in X-ray micro-CT, cupping (brightness difference between the periphery and central regions) and ring artifacts (consecutive concentric circles emanating from the origin). The artifacts removal sequentially applies coordinate transformation, normalization, and low-pass filtering in 2D Fourier spectrum to raw CT-images. The applicability and performance of the techniques are showcased by describing extraction of 3D pore structures from micro-CT images of porous basalt using artifacts reductions, binarization, and volume stacking. Comparisions between calibrated and raw images indicate that the artifacts removal allows us to avoid the overestimation of porosity of imaged materials, and proper calibration of the artifacts plays a crucial role in using X-ray CT for geomaterials.

Design of an Anti-Jamming Five-Element Planar GPS Array Antenna (재밍대응 5소자 평면 GPS 배열 안테나 설계)

  • Seo, Seung Mo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.6
    • /
    • pp.628-636
    • /
    • 2014
  • This paper describes the design and analysis of five-element planar array antenna of an anti-jamming satellite navigation system. We propose a design of multi-layer patch antenna for Global Positioning System(GPS) $L_1/L_2$ dual bands. The proposed antenna has two ports feeding network with a hybrid chip coupler for a broad bandwidth with Right-Handed Circular Polarization(RHCP). The measurement results show the bore-sight gains of 1.10 dBic($L_1$) and 0.37 dBic($L_2$) for the center element. The bore-sight gains of an edge element are 0.99 dBic($L_1$) and -0.57 dBic($L_2$). At a fixed elevation angle of $30^{\circ}$, antennas show average gains of -2.08 dBic ($L_1$) and -5.33 dBic($L_2$) for the center element, and average gains of -0.40 dBic($L_1$) and -2.09 dBic($L_2$) for the edge elements. The results demonstrate that the proposed array antenna is suitable for anti-jamming applications.

The Effects of the Initial Crack Length and Fiber Orientation on the Interlaminar Delamination of the CFRP/GFRP Hybrid Laminate (초기 균열길이 및 섬유방향이 CFRP/GFRP 하이브리드 적층재의 층간 파괴에 미치는 영향)

  • Kwon, Oh-Heon;Kwon, Woo-Deok;Kang, Ji-Woong
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.1
    • /
    • pp.12-17
    • /
    • 2013
  • Considering the wind power system and the rotor blades which are composed of much technology, the wind power blade would be the most dangerous part because it revolves at high speed and weighs about dozens of tons, if the accident happens. Therefore, the light weight composite materials have been replacing as substitutional materials. The object of this study is to examine the delamination and damage for CFRP/GFRP hybrid composite that is used for strength improvement of a wind power blade. The influence of the initial crack length and fiber orientation for the interlaminar delamination was exposed for the blade safety. Plain woven CFRP instead of GFRP was inserted into the layer of the box spar for improving the strength and blade life. DCB(Double Cantilever Beam) specimen was used for evaluating fracture toughness and damage evaluation of interlaminar delamination. The material used in the experiment is a commercial material known as CF 3327 EPC in plain woven carbon prepreg(Hankuk Carbon Co.) and UD glass fiber prepreg(Hyundai Fiber Co.). From the results, crack growth rate is not so different according to the variation of the initial crack length. Mode I interlamainar fracture toughness of fiber direction $0^{\circ}$ is higher than that of $45^{\circ}$. Interlaminar fracture has an effect on fiber direction and K decreased with lower value according to increasing initial crack length. Also energy release rate fracture toughness was evaluated because CFRP/GFRP hybrid composite with a different thickness is under the mixed mode loading condition. The interlaminar fracture was almost governed by mode I fracture even though the mixed mode.

Design and Modeling of the Embedded Meander line and Radial/T Stub for low-cost SOP (저가용 SOP를 위한 적층형 Meander와 Radial/T Stub의 설계와 모델링)

  • Cheon, Seong-Jong;Yang, Chang-Soo;Lee, Seung-Jae;Park, Jae-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1591-1592
    • /
    • 2006
  • 이동 및 정보통신 시스템이 소형화 및 고성능화됨에 따라 System OR Package (SOP) 기술의 연구개발이 주목을 받고 있다. 저가형 SOP를 위하여 가장 많은 연구가 다층인쇄회로 기판에 수동소자 및 전송선로를 내장시키는 것이다. 본 논문에서는, 8층 KB 기판에 Meander line과 Radial/T Stub 패턴을 Advanced Design System(ADS) simulation을 이용하여 설계 및 제작하고 분석함으로써 정확한 SOP 디자인 및 설계 방향을 제시하고자 한다. 설계변수-패턴의 length, width, spacing, 각도와 공정변수-1층/3층, 기판 재질(prepreg(PP)과 resin coated copper(RCC))을 두어 제작하여 그 특성을 비교하였다. Meander Line는 PP보다 RCC에서의 인덕턴스가 크고 높은 자가 공진주파수를 가졌고, 3층보다 1층에서의 인덕턴스가 안정적이었다. Radial/T Stub는 PP보다 RCC에서의 커패시턴스가 작으나, 높은 자가 공진 주파수로 커패시턴스가 안정적이었다. Meander Line은 RCC, 병렬 전송선로 간격-400um, 병렬 전송선로 길이-500um, 1층 설계 시, 인덕턴스-1.60nH, 자가 공진주파수-9.21GHz 특성이 가장 우수하고, Radial Stub는 RCC, $60^{\circ}$, 1층 설계 시, 커패시턴스-0.62pF, 자가 공진주파수-9.06GHz의 특성이 나타났고, T Stub는 RCC, Stub 길이-600um, Stub 너비-150um, 1층 설계 시, 커패시턴스 -0.38pF, 자가 공진주파수-10GHz이상으로 우수한 특성을 나타냈다.

  • PDF

Design and Analysis of Section-divided Circular Composite Wing Spar (단면분할 원통형 복합재료 날개 보 설계 및 해석)

  • Kim, Ki-Hoon;Koo, Kyo-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.687-694
    • /
    • 2019
  • A circular composite spar in the wing of ultra-light aircraft is subjected to both bending moment and transverse shear loads. However, the beam being used in the aircraft may be inefficient because the design would not take into account the characteristics of the circular tube that supports the bending moment in top and bottom arc parts and the transverse load in left and right ones. Therefore, it is necessary to efficiently fabricate the circular tube beam by properly selecting the stacking sequences or the laminated composite structure. In order to increase both bending and transverse shear strengths of the beams, in this study, a cross-section of circular tube is divided into four arcs: top, bottom, left and right ones. The commercial program, MSC/NASTRAN is used to calculate vertical displacement and the normal and shear strains with variation of parameters such as division angle of arc and fiber orientation. Based on the results, the effective parameters for the new circular composite beam are presented to increase its bending and shear strengths.