기존의 GPC방법으로 제어하기 힘든 비선형성과 플랜트의 변수변화를 포함하는 비선형 플랜트를 지연 예측신경망을 사용하여 효과적으로 제어하는 적응 GPC방법을 제안한다 제안한 방법에서는 플랜트의 선형 변수 추정이나 근사적인 모델로부터 선형 매개변수를 구해서 선형 모델을 만들고 실제 시스템의 출력과 선형모델의 오차를 신경망의 출력으로 표현한 다음, 이 식으로부터 적응 GPC 알고리듬을 유도한다. 여기서 지연 예측신경망은 적응 GPC에 이용될 플랜트의 출력을 예측하도록 학습된다. 이와 같은 제어기를 구성함으로써 선형 변수만으로 적응 GPC 제어기가 구성되어질 경우 생기는 비선형 변수의 추정과 출력 예측 값을 계산하는 번거로움을 해결하였다.
본 논문의 목적은 신경망을 이용한 퍼지 하이퍼큐브의 적응 학습 제어알고리듬의 개발이다. 퍼지 시스템 규칙베이스 후건부의 실시간적인 수정, 초기 퍼지 제어규칙의 일시적인 안정성을 가정하여 퍼지제어기와 신경망의 장점만을 살린 지능형 제어시스템의 설계방법을 제안하였다. 퍼지 제어기로는 실현 가능한 퍼지 하이퍼큐브의 구조를 선택하였고, 퍼셉트론 신경만의 학습법칙을 적용하여 출력오차로써 퍼지 제어기의 규칙을 실시간적으로 수정해 나가는 방법을 사용하였다. 결과적으로 적응 퍼지-뉴로 제어시스템을 Cart-Pole 제어에 응용함으로써 이러한 지능형 제어기의 유효성과 강인성을 보였다.
PID 제어기는 구조가 간단하고 적용이 용이하다는 장점으로 인하여 널리 사용되고 있는 제어방식이다. 이러한 선형 PID 제어기는 시스템의 파라메터가 변화가 있거나 부하 특성이 비선형적으로 변화할 때에 적절한 이득과 성능을 얻기 어려워 고성능 제어 특성을 기대하기 어렵다. 본 연구에서는 세포성 면역 반응과 경사감소학습에 기초하여 비선형 PID 제어기를 설계하고, 설계된 제어기의 이득과 비선형 함수의 파라메터들을 실시간 적응적으로 학습할 수 있는 학습 알고리즘을 개발하고, 이를 제어시스템에 적용하였다. 제안된 비선형 PID 제어기는 비선형 직류 모터 시스템의 파라메터들이 변화하거나 주파수가 다른 추종 명령에 대하여, 적응적으로 이득을 변화 시키며 추종함을 보였다.
본 논문에서는 적응 제어 문제를 다루기 위해 CFCM 클러스터링과 퍼지 균등화 기법을 이용하여 새로운 적응 뉴로-퍼지 제어기를 설계하고자 한다. 먼저 오프라인에서 CFCM은 입력데이터의 성질과 출력 패턴의 성질까지도 고려한 퍼지 클러스터링 기법으로 적응 뉴로-퍼지 제어기의 구조동정을 수행한다. 파라미터 동정은 역전과 알고리즘과 RLSE(Recursive Least Square Estimate)을 이용한 하이브리드 학습을 수행한다. 온라인 학습에서는 시변특성으로 인해 전제부 및 결론부 파라미터를 실시간으로 계산된다. 시뮬레이션으로 온 라인 적응 뉴로-퍼지 제어 시스템의 성능을 입증하기 위해 목욕물 온도제어 시스템에 대해 다루고 전형적인 퍼지 제어기에 비해 오프 라인과 온 라인 설계 모두 좋은 성능을 보이고자 한다.
시간 및 주파수 특성 분석이 용이한 웨이블릿을 신경회로망에 적용시킨 웨이블릿 신경 회로망의 파라미터 학습 방법에는 오차 역전파 알고리듬 및 유선 알고리듬 등 여러 가지 방법이 있으나 이러한 학습 방법들은 수렴 시간이 오래 걸리는 단점을 가진다. 따라서 본 논문에서는 웨이블릿 신경 회로망의 최적 파라미터를 결정하기 위한 학습 방법으로 일반적으로 비선형 시스템 추정에 주로 사용되는 확장 칼만 필터 알고리듬을 적용한 신경회로망을 제안한다. 또한 제안된 학습 알고리듬을 이용한 웨이블릿 신경 회로망으로 간접 적응 제어기를 설계하여 연속 시간 혼돈 시스템인 Duffing 시스템의 제어에 적용함으로써 확장 칼만 필터 학습 알고리듬을 적용한 웨이블릿 신경 회로망 모델의 우수성을 보인다.
본 논문에서는 신경회로망의 학습능력을 이용하여 AC 모터의 속도제어에 이용된 기 존의 PI제어기의 문제점을 보완하고자 한다. 기존의 아날로그 PI제어기에서는 각 비례, 적분 파라메타를 개발자가 조정하여 고정하면 부하가 변동될 경우 적응성이 떨어지는 문제점을 안고 있었다. 본 논문에서 제시된 디지털 신경망제어기는 학습을 통해 새로운 환경에 적응 가능하다는 점에 가정하여 설계하고 성능을 비교 평가하였다. 본 논문에서 사용된 신경회로 망의 구조는 신경망중에서 가장 범용적으로 사용되는 다층 퍼셉트론 모델구조를 선택하였 다. 신경망 제어기장치로는 인텔 8097 마이크로 콘트롤러를 이용하였다.
이동로봇은 유연한 생산시스템이 필요한 산업현장에서 유용하게 사용된다. 이동로봇이 생산부품과 같은 기계적 부하를 싣고 정해진 경로를 따라 정확히 이동하여야 하며 통상 기구학적 제어기가 사용되고 있다. 그러나 부하가 매우 크고 비선형 마찰도 클 경우, 기구학적 제어기로 만족할 만한 제어성능을 기대할 수 없어서 동적 제어기가 연구되고 있다. 기존의 동적 제어기는 부하의 무게와 위치를 정확히 알아야 한다는 조건이 있다. 그러나 실제 기계적 부하는 빈번히 변하고 정확히 알 수 없으므로 기존의 동적제어기 성능에 한계가 있다. 따라서 기계적 부하를 정확히 알지 못해도 이동로봇의 동적제어가 작동하도록 경사감소학습을 이용하여 적응 PD 제어 방법을 본 논문에서 제안하였다. 여러 가지 부하 변동 조건하에서 다양하게 시뮬레이션 하여 본 논문의 적응 PD 제어 방법이 기존의 방법보다 폭넓은 수렴영역을 가지고 있음을 확인하였다.
본 논문은 장애물 회피 능력을 갖는 자발적 주행 로봇 (Khepera)을 제어하는 재귀 신경망을 진화와 학습의 상호 적응에 의해 결정하는 방안을 제시한다. 제안한 동시 적응 방안은 다음 두 가지 성질을 갖는다. 유전자 알고리즘에 의해 해집단내 여러 개의 신경망 제어기들은 전역적 탐색을 수행하여 점진적으로 장애물과의 충돌이 적게 일어나도록 진화되고, 동시에 각 신경망 제어기는 상보적 재강화 역전파 (CRBP: Complementary Reinforcement Backpropagation) 학습에 의해 국부적 탐색을 수행하여 주행 특성이 로봇이 처한. 외부 환경에 적응되어진다. 실험 결과, 학습과 결합한 진화에 의해 얻어진 신경망 제어기가 진화자체만에 의해 얻어진 신경망 제어기보다 더 나은 충돌 회피 능력을 보여 주며, 원하는 주행 성능에 보다 빨리 도달하는 것을 확인할 수 있다.
제어 환경의 변화에 강건하게 대처할 수 있는 제어 시스템을 개발하기 위해서, 본 논문에서는 자연계의 면역 시스템과 다층 신경망을 결합한 제어 시스템을 제안한다. 제안한 제어 시스템은 면역 알고리즘을 이용하여 다층 신경망의 가중치를 조절한다. 면역 알고리즘은 초기 방어 단계인 선천성 면역 알고리즘과 적응 단계인 적응 면역 알고리즘으로 구성되어 있다. 과거에 학습한 경험이 있는 환경과 유사한 환경에 대해서 선천성 면역 알고리즘이 동작하고, 학습한 경험이 없는 새로운 제어 환경의 변하에 대해서는 적응 면역 알고리즘이 동작한다. 면역 알고리즘을 이용한 제어 시스템을 로봇 매니퓰레이터의 궤적 추종 제어에 적용하였으며, 컴퓨터 모의 실험을 통해 제어 시스템의 성능을 평가한다.
유연 로봇 매니퓰레이터의 위치 제어 알고리즘에 대한 연구를 하였다. 제안하는 알고리즘은 신경회로망의 학습 알고리즘에 근거한 자동 구축 퍼지 적응 제어기(ACFAC : Automaitc Constructed Fuzzy Adaptive controller)에 기본으로 한다. 제안하는 시스템은 비지도 경쟁 학습 알고리즘을 사용하여 입력 변수의 멤버십 함수와 지도 Outstar 학습 알고리즘을 사용하여 출력 정보를 학습시킨다. ACFAC는 유연 로봇 매니퓰레이터의 동력한 모델을 필요로 하지 않는다. ACFAC는 유연 로봇 매니퓰레이터의 끝점이 원하는 궤적을 따라가도록 설계되었다. 이 제어기의 입력은 위치 오차, 위치 오차의 미분 값과 오차의 variation에 의해 결정된다. ACFAC의 우수서을 보여주기 우해서 PID 제어나 신경회로망 알고리즘을 사용한 결과와 비교를 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.