• 제목/요약/키워드: 적응 학습 제어

검색결과 169건 처리시간 0.022초

지연 예측신경망을 이용한 적응 GPC

  • 정희태
    • 한국정보통신학회논문지
    • /
    • 제7권7호
    • /
    • pp.1527-1532
    • /
    • 2003
  • 기존의 GPC방법으로 제어하기 힘든 비선형성과 플랜트의 변수변화를 포함하는 비선형 플랜트를 지연 예측신경망을 사용하여 효과적으로 제어하는 적응 GPC방법을 제안한다 제안한 방법에서는 플랜트의 선형 변수 추정이나 근사적인 모델로부터 선형 매개변수를 구해서 선형 모델을 만들고 실제 시스템의 출력과 선형모델의 오차를 신경망의 출력으로 표현한 다음, 이 식으로부터 적응 GPC 알고리듬을 유도한다. 여기서 지연 예측신경망은 적응 GPC에 이용될 플랜트의 출력을 예측하도록 학습된다. 이와 같은 제어기를 구성함으로써 선형 변수만으로 적응 GPC 제어기가 구성되어질 경우 생기는 비선형 변수의 추정과 출력 예측 값을 계산하는 번거로움을 해결하였다.

신경망을 이용한 퍼지 하이퍼큐브의 적응 학습방법 (An Adaptive Learning Method of Fuzzy Hypercubes using a Neural Network)

  • 제갈욱;최병걸;민석기;강훈
    • 한국지능시스템학회논문지
    • /
    • 제6권4호
    • /
    • pp.49-60
    • /
    • 1996
  • 본 논문의 목적은 신경망을 이용한 퍼지 하이퍼큐브의 적응 학습 제어알고리듬의 개발이다. 퍼지 시스템 규칙베이스 후건부의 실시간적인 수정, 초기 퍼지 제어규칙의 일시적인 안정성을 가정하여 퍼지제어기와 신경망의 장점만을 살린 지능형 제어시스템의 설계방법을 제안하였다. 퍼지 제어기로는 실현 가능한 퍼지 하이퍼큐브의 구조를 선택하였고, 퍼셉트론 신경만의 학습법칙을 적용하여 출력오차로써 퍼지 제어기의 규칙을 실시간적으로 수정해 나가는 방법을 사용하였다. 결과적으로 적응 퍼지-뉴로 제어시스템을 Cart-Pole 제어에 응용함으로써 이러한 지능형 제어기의 유효성과 강인성을 보였다.

  • PDF

인체 면역 피드백 메카니즘을 활용한 제어기 설계 (A controller Design using Immune Feedback Mechanism)

  • 박진현;김현덕;최영규
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 추계종합학술대회
    • /
    • pp.701-704
    • /
    • 2005
  • PID 제어기는 구조가 간단하고 적용이 용이하다는 장점으로 인하여 널리 사용되고 있는 제어방식이다. 이러한 선형 PID 제어기는 시스템의 파라메터가 변화가 있거나 부하 특성이 비선형적으로 변화할 때에 적절한 이득과 성능을 얻기 어려워 고성능 제어 특성을 기대하기 어렵다. 본 연구에서는 세포성 면역 반응과 경사감소학습에 기초하여 비선형 PID 제어기를 설계하고, 설계된 제어기의 이득과 비선형 함수의 파라메터들을 실시간 적응적으로 학습할 수 있는 학습 알고리즘을 개발하고, 이를 제어시스템에 적용하였다. 제안된 비선형 PID 제어기는 비선형 직류 모터 시스템의 파라메터들이 변화하거나 주파수가 다른 추종 명령에 대하여, 적응적으로 이득을 변화 시키며 추종함을 보였다.

  • PDF

온 라인 CFCM 기반 적응 뉴로-퍼지 시스템에 의한 온도제어 (Temperature Control by On-line CFCM-based Adaptive Neuro-Fuzzy System)

  • 윤기후;곽근창
    • 대한전자공학회논문지TE
    • /
    • 제39권4호
    • /
    • pp.414-422
    • /
    • 2002
  • 본 논문에서는 적응 제어 문제를 다루기 위해 CFCM 클러스터링과 퍼지 균등화 기법을 이용하여 새로운 적응 뉴로-퍼지 제어기를 설계하고자 한다. 먼저 오프라인에서 CFCM은 입력데이터의 성질과 출력 패턴의 성질까지도 고려한 퍼지 클러스터링 기법으로 적응 뉴로-퍼지 제어기의 구조동정을 수행한다. 파라미터 동정은 역전과 알고리즘과 RLSE(Recursive Least Square Estimate)을 이용한 하이브리드 학습을 수행한다. 온라인 학습에서는 시변특성으로 인해 전제부 및 결론부 파라미터를 실시간으로 계산된다. 시뮬레이션으로 온 라인 적응 뉴로-퍼지 제어 시스템의 성능을 입증하기 위해 목욕물 온도제어 시스템에 대해 다루고 전형적인 퍼지 제어기에 비해 오프 라인과 온 라인 설계 모두 좋은 성능을 보이고자 한다.

확장 칼만 학습 알고리듬을 이용한 웨이블릿 신경 회로망 기반 간접 적응 제어기 설계 (Design of Wavelet Neural Network Based Indirect Adaptive Controller Using EKF Training Method)

  • 김경주;오준섭;최윤호;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.361-363
    • /
    • 2004
  • 시간 및 주파수 특성 분석이 용이한 웨이블릿을 신경회로망에 적용시킨 웨이블릿 신경 회로망의 파라미터 학습 방법에는 오차 역전파 알고리듬 및 유선 알고리듬 등 여러 가지 방법이 있으나 이러한 학습 방법들은 수렴 시간이 오래 걸리는 단점을 가진다. 따라서 본 논문에서는 웨이블릿 신경 회로망의 최적 파라미터를 결정하기 위한 학습 방법으로 일반적으로 비선형 시스템 추정에 주로 사용되는 확장 칼만 필터 알고리듬을 적용한 신경회로망을 제안한다. 또한 제안된 학습 알고리듬을 이용한 웨이블릿 신경 회로망으로 간접 적응 제어기를 설계하여 연속 시간 혼돈 시스템인 Duffing 시스템의 제어에 적용함으로써 확장 칼만 필터 학습 알고리듬을 적용한 웨이블릿 신경 회로망 모델의 우수성을 보인다.

  • PDF

AC MOTOR의 속도제어 개선을 위한 신경망제어기의 설계 (Design of Neuro Controller for Improving Velocity Control of AC Motor)

  • 설재훈;임영도
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1995년도 추계학술대회 학술발표 논문집
    • /
    • pp.243-248
    • /
    • 1995
  • 본 논문에서는 신경회로망의 학습능력을 이용하여 AC 모터의 속도제어에 이용된 기 존의 PI제어기의 문제점을 보완하고자 한다. 기존의 아날로그 PI제어기에서는 각 비례, 적분 파라메타를 개발자가 조정하여 고정하면 부하가 변동될 경우 적응성이 떨어지는 문제점을 안고 있었다. 본 논문에서 제시된 디지털 신경망제어기는 학습을 통해 새로운 환경에 적응 가능하다는 점에 가정하여 설계하고 성능을 비교 평가하였다. 본 논문에서 사용된 신경회로 망의 구조는 신경망중에서 가장 범용적으로 사용되는 다층 퍼셉트론 모델구조를 선택하였 다. 신경망 제어기장치로는 인텔 8097 마이크로 콘트롤러를 이용하였다.

  • PDF

경사감소학습을 이용한 이동로봇의 적응 PD 제어 방법 (An Adaptive PD Control Method for Mobile Robots Using Gradient Descent Learning)

  • 최영규;박진현
    • 한국정보통신학회논문지
    • /
    • 제20권9호
    • /
    • pp.1679-1687
    • /
    • 2016
  • 이동로봇은 유연한 생산시스템이 필요한 산업현장에서 유용하게 사용된다. 이동로봇이 생산부품과 같은 기계적 부하를 싣고 정해진 경로를 따라 정확히 이동하여야 하며 통상 기구학적 제어기가 사용되고 있다. 그러나 부하가 매우 크고 비선형 마찰도 클 경우, 기구학적 제어기로 만족할 만한 제어성능을 기대할 수 없어서 동적 제어기가 연구되고 있다. 기존의 동적 제어기는 부하의 무게와 위치를 정확히 알아야 한다는 조건이 있다. 그러나 실제 기계적 부하는 빈번히 변하고 정확히 알 수 없으므로 기존의 동적제어기 성능에 한계가 있다. 따라서 기계적 부하를 정확히 알지 못해도 이동로봇의 동적제어가 작동하도록 경사감소학습을 이용하여 적응 PD 제어 방법을 본 논문에서 제안하였다. 여러 가지 부하 변동 조건하에서 다양하게 시뮬레이션 하여 본 논문의 적응 PD 제어 방법이 기존의 방법보다 폭넓은 수렴영역을 가지고 있음을 확인하였다.

진화와 학습의 상호 적응에 의한 자발적 주행 로봇을 위한 재귀 신경망 제어기 설계 (A Design of the Recurrent NN Controller for Autonomous Mobil Robot by Coadaptation of Evolution and Learning)

  • 김대진;강대성
    • 전자공학회논문지CI
    • /
    • 제37권3호
    • /
    • pp.27-38
    • /
    • 2000
  • 본 논문은 장애물 회피 능력을 갖는 자발적 주행 로봇 (Khepera)을 제어하는 재귀 신경망을 진화와 학습의 상호 적응에 의해 결정하는 방안을 제시한다. 제안한 동시 적응 방안은 다음 두 가지 성질을 갖는다. 유전자 알고리즘에 의해 해집단내 여러 개의 신경망 제어기들은 전역적 탐색을 수행하여 점진적으로 장애물과의 충돌이 적게 일어나도록 진화되고, 동시에 각 신경망 제어기는 상보적 재강화 역전파 (CRBP: Complementary Reinforcement Backpropagation) 학습에 의해 국부적 탐색을 수행하여 주행 특성이 로봇이 처한. 외부 환경에 적응되어진다. 실험 결과, 학습과 결합한 진화에 의해 얻어진 신경망 제어기가 진화자체만에 의해 얻어진 신경망 제어기보다 더 나은 충돌 회피 능력을 보여 주며, 원하는 주행 성능에 보다 빨리 도달하는 것을 확인할 수 있다.

  • PDF

면역 알고리즘을 이용한 강건한 제어 시스템 설계 (On Designing a Robust Control System Using Immune Algorithm)

  • 서재용;원경재;김성현;조현찬;전홍태
    • 한국지능시스템학회논문지
    • /
    • 제8권6호
    • /
    • pp.12-20
    • /
    • 1998
  • 제어 환경의 변화에 강건하게 대처할 수 있는 제어 시스템을 개발하기 위해서, 본 논문에서는 자연계의 면역 시스템과 다층 신경망을 결합한 제어 시스템을 제안한다. 제안한 제어 시스템은 면역 알고리즘을 이용하여 다층 신경망의 가중치를 조절한다. 면역 알고리즘은 초기 방어 단계인 선천성 면역 알고리즘과 적응 단계인 적응 면역 알고리즘으로 구성되어 있다. 과거에 학습한 경험이 있는 환경과 유사한 환경에 대해서 선천성 면역 알고리즘이 동작하고, 학습한 경험이 없는 새로운 제어 환경의 변하에 대해서는 적응 면역 알고리즘이 동작한다. 면역 알고리즘을 이용한 제어 시스템을 로봇 매니퓰레이터의 궤적 추종 제어에 적용하였으며, 컴퓨터 모의 실험을 통해 제어 시스템의 성능을 평가한다.

  • PDF

유연 로봇 매니퓰레이터의 자동 구축 퍼지 적응 제어기 설계 (Design of an Automatic constructed Fuzzy Adaptive Controller(ACFAC) for the Flexible Manipulator)

  • 이기성;조현철
    • 한국지능시스템학회논문지
    • /
    • 제8권2호
    • /
    • pp.106-116
    • /
    • 1998
  • 유연 로봇 매니퓰레이터의 위치 제어 알고리즘에 대한 연구를 하였다. 제안하는 알고리즘은 신경회로망의 학습 알고리즘에 근거한 자동 구축 퍼지 적응 제어기(ACFAC : Automaitc Constructed Fuzzy Adaptive controller)에 기본으로 한다. 제안하는 시스템은 비지도 경쟁 학습 알고리즘을 사용하여 입력 변수의 멤버십 함수와 지도 Outstar 학습 알고리즘을 사용하여 출력 정보를 학습시킨다. ACFAC는 유연 로봇 매니퓰레이터의 동력한 모델을 필요로 하지 않는다. ACFAC는 유연 로봇 매니퓰레이터의 끝점이 원하는 궤적을 따라가도록 설계되었다. 이 제어기의 입력은 위치 오차, 위치 오차의 미분 값과 오차의 variation에 의해 결정된다. ACFAC의 우수서을 보여주기 우해서 PID 제어나 신경회로망 알고리즘을 사용한 결과와 비교를 하였다.

  • PDF