• 제목/요약/키워드: 적응 학습 제어

검색결과 169건 처리시간 0.023초

Q 학습을 이용한 교통 제어 시스템 (Traffic Control using Q-Learning Algorithm)

  • 장정;승지훈;김태영;정길도
    • 한국산학기술학회논문지
    • /
    • 제12권11호
    • /
    • pp.5135-5142
    • /
    • 2011
  • 이 논문에서는 도심 지역의 교통 제어 시스템의 동적 응답 성능 향상을 위하여 적응형 Q-Learning 강화 학습 메커니즘을 설계 하였다. 도로, 자동차, 교통 제어 시스템을 지능 시스템으로 모델링 하고, 자동차와 도로 사이는 무선 통신을 이용한 네트워크가 구성된다. 도로와 대로변에 필요한 센터네트워크가 설치되고 Q-Learning 강화 학습은 제안한 메커니즘의 구현을 위해 핵심 알고리즘으로 채택하였다. 교통 신호 제어 규칙은 자동차와 도로에서 매 시간 업데이트된 정보에 따라서 결정되며, 이러한 방법은 기존의 교통 제어 시스템에 비하여 도로를 효율적으로 활용하며 결과적으로 교통 흐름을 개선 한다. 알고리즘을 활용한 최적의 신호 체계는 온라인상에서 자동으로 학습함으로서 구현된다. 시뮬레이션을 통하여 제안한 알고리즘이 기존 시스템에 비하여 효율성 개선과 차량의 대개 시간에 대한 성능 지수가 모두 30% 이상 향상되었다. 실험 결과를 통하여 제안한 시스템이 교통 흐름을 최적화함을 확인하였다.

신경회로망을 이용한 헬리콥터 적응 비선형 제어 (Adaptive Nonlinear Control of Helicopter Using Neural Networks)

  • 박범진;홍창호;석진영
    • 한국항공우주학회지
    • /
    • 제32권4호
    • /
    • pp.24-33
    • /
    • 2004
  • 본 논문에서는 광범위한 비선형 함수 근사 성질을 갖고 있는 온라인 적응 신경회로망을 이용하여 헬리콥터 비행 제어 시스템을 설계하였다. 기존의 시스템 모델링 오차를 보상하는 방식과는 달리, 시스템의 입출력 정보를 통해 피드백 선형화 기법에서 필요한 두 개의 비선형 함수를 신경회로망을 이용하여 대체하는 방법을 적용하였다. 두 개의 비선형 함수를 신경회로망으로 대체하여 구성된 폐회로 시스템의 추적 성능과 내부 안정성을 보장하기 위하여 신경회로망의 가중치 학습 방법을 리야프노프 함수를 이용하여 유도하였다. 그리고 헬리콥터 저속 비행 모드에 대한 수치 시뮬레이션 결과를 통해 신경회로망을 적용한 제어 시스템의 성능을 검증하였다.

유비쿼터스 러닝을 위한 상황인식 컨텐츠 전송제어 시스템 (Context-Aware Contents Delivery Control System for U-Learning)

  • 정정현;이은석
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.628-630
    • /
    • 2005
  • 유비쿼터스 컴퓨팅 환경의 중요한 이슈 중 하나인 상황인식은 컴퓨팅환경(예를 들어 가용 처리장치, 사용자 입력과 표시를 위한 장치, 네트워크 수용량, 다른 기기와의 접속용이성 및 컴퓨팅비용 등), 사용자 환경(위치, 주위 사람들과의 접촉, 사회적 입장 등) 및 물리적 환경(밝기, 소음, 온도 등)이 지속적으로 변화하는 수행 환경에서 인간으로 하여금 본연의 목적을 달성하는데 집중할 수 있도록 지원하는 인간 친화적인 시스템을 제공하기 위한 필수 기술이다. 이러한 상황인식을 이용하여, 사람이나 장소 및 사물의 입장이나 처지 혹은 관계 등을 특징 지을 수 있는 신원, 위치, 상태(혹은 활동) 및 시간의 4가지 상황정보를 고려한 학습이 이루어지도록 지원함으로써 학습에 있어서의 접근용이성과 적응성을 높이기 위한 컨텐츠 전승제어 시스템을 제안한다.

  • PDF

진화 연산을 이용한 실시간 자기동조 학습제어 (The Real-time Self-tuning Learning Control based on Evolutionary Computation)

  • 장성욱;이진걸
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.105-109
    • /
    • 2001
  • This paper discuss the real-time self-tuning learning control based on evolutionary computation, which proves its the superiority in the finding of the optimal solution at the off-line learning method. The individuals are reduced in order to learn the evolutionary strategy in real-time, and new method that guarantee the convergence of evolutionary mutations are proposed. It possible to control the control object varied as time changes. As the state value of the control object is generated, applied evolutionary strategy each sampling time because the learning process of an estimation, selection, mutation in real-time. These algorithms can be applied, the people who do not have knowledge about the technical tuning of dynamic systems could design the controller or problems in which the characteristics of the system dynamics are slightly varied as time changes.

  • PDF

접촉 작업을 위한 로봇의 스킬 학습 전략 (Robot Skill Learning Strategy for Contact Task)

  • 김병찬;강병덕;박신석;강성철
    • 로봇학회논문지
    • /
    • 제3권2호
    • /
    • pp.146-153
    • /
    • 2008
  • 본 논문에서는 인간 운동 제어 이론과 기계학습을 기반으로 하여 로봇의 접촉 작업 수행을 위한 새로운 운동 학습 전략을 제시하였다. 성공적인 접촉 작업 수행을 위한 본 연구의 전략은 강화학습 기법을 통하여 최적의 작업 수행을 위한 임피던스 매개 변수를 찾는 것이다. 본 연구에서는 최적의 임피던스 매개 변수를 결정하기 위하여 Recursive Least-Square (RLS) 필터 기반 episodic Natural Actor-Critic 알고리즘이 적용되었다. 본 논문에서는 제안한 전략의 효용성을 증명하기 위해 동역학 시뮬레이션을 수행하였고, 그 결과를 통하여 접촉작업에서의 작업 최적화 및 환경이 가지는 불확실성에 대한 적응성을 보여 주었다.

  • PDF

중앙 집중형 망에서 인공면역체계 기반의 적응적 망 이상 상태 탐지 모델 설계 (An Adaptive Anomaly Detection Model Design based on Artificial Immune System in Central Network)

  • 유경민;양원혁;이상열;정혜련;소원호;김영천
    • 한국통신학회논문지
    • /
    • 제34권3B호
    • /
    • pp.311-317
    • /
    • 2009
  • 기존의 망 이상 상태 탐지 시스템들은 주로 정상 상태의 시스템 사용률 등과 같은 통계 값으로 결정된 임계값을 기반으로 탐지하기 때문에 이상 상태임에도 불구하고 정상 상태와 비슷한 시스템 통계 값을 가지면 탐지하지 못하는 문제점이 있다. 이러한 단점들을 해결하기 위하여 본 논문에서는 인간면역체계의 학습, 적응, 기억 능력등의 특성을 이용하는 인공면역체계 기반의 적응적 망 이상 상태 탐지 모델을 제안한다. 이를 위하여 인간면역 시스템의 수지상 세포 (Dendritic Cell)와 T 세포 사이의 상호 작용을 이용한 탐지 모델을 설계하고 각 구성 요소 및 기능을 정의한다. 중앙 집중 제어 노드는 각 라우터 노드로부터 전달받은 정보를 분석하여 대응 방법을 해당 라우터들에게 전달한다. 또한 라우터 노드는 학습을 통해 얻어진 데이터를 기반으로 이상 상태를 탐지할 뿐만 아니라 중앙 집중 제어 노드로부터 전달받은 정보를 이용하여 이상 상태를 처리한다. 최종적으로 제안된 이상 상태탐지 모델의 타당성을 검증하기 위하여 구성 모듈을 설계하고 flooding 공격에 대한 시뮬레이션을 수행한다.

TV 제어 메뉴의 다국적 언어 인식을 위한 특징 선정 기법 (A Feature Selection Technique for Multi-lingual Character Recognition)

  • 강근석;박현정;김호준
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2005년도 학술대회
    • /
    • pp.199-202
    • /
    • 2005
  • TV OSD(On Screen Display) 메뉴 자동검증 시스템에서 다국적 언어의 문자 인식은 표준패턴의 구조적 분석이 쉽지 않을 뿐만 아니라 학습패턴 집합의 규모와 특징의 수가 증가함으로 인하여 특징추출 및 인식 과정에서 방대한 계산량이 요구된다. 이에 본 연구에서는 학습 데이터에 포함되는 다량의 특징 집합으로부터 인식에 필요한 효과적인 특징을 선별함으로써 패턴 분류기의 효율성을 개선하기 위한 방법론을 고찰한다. 이를 위하여 수정된 형태의 Adaboost 기법을 제안하고 이를 적용한 실험 결과로부터 그 유용성을 고찰한다. 제안된 알고리즘은 초기의 특징 집합을 취약한 성능을 갖는 다수의 분류기(classifier)로서 고려하며, 이로부터 반복학습을 통하여 개선된 분류기를 점진적으로 선별해 나가게 된다. 학습의 원리는 주어진 학습패턴 집합에 기초하여 일종의 교사학습(supervised learning) 방식으로 이루어진다. 각 패턴에 할당된 가중치 값은 각 단계에서 산출되는 분류결과에 따라 적응적으로 수정되어 반복학습이 진행됨에 따라 점차 보완적 성능을 갖는 분류기를 선택할 수 있게 한다. 즉, 주어진 각 학습패턴에 대하여 초기에 균등한 가중치가 부여되며, 반복학습의 각 단계에서 적용되는 분류기의 출력을 분석하여 오분류된 패턴의 가중치 분포를 증가시켜 나간다. 본 연구에서는 실제 응용으로서 OSD 메뉴검증 시스템을 대상으로 제안된 이론을 적용하고 그 타당성을 평가한다.

  • PDF

유전알고리즘과 신경망을 결합한 PID 적응제어 시스템의 설계 (Design of PID adaptive control system combining Genetic Algorithms and Neural Network)

  • 조용갑;박재형;박윤명;서현재;최부귀
    • 한국정보통신학회논문지
    • /
    • 제3권1호
    • /
    • pp.105-111
    • /
    • 1999
  • 본 논문은 유전 알고리즘과 신경망을 이용하여 PID 제어기의 최적의 파라메터를 추출하는데 있다. 유전 알고리즘에 의한 제어는 off-line 동작으로서 외란이나 부하변동에 약한 면을 가지고 있다. 따라서 신경망을 제어기에 추가하여 on-line화하여 다음과 같이 개선하고자 한다. 첫째, 신경망의 순방향 동작에서 유전 알고리즘에 의해 적합한 PID 파라메터를 찾아 세대수의 증가에 따른 최적의 출력조건을 설정하고 둘째 신경망의 학습능력을 이용하여 역전파 학습에 의한 파라메터를 수정하여 외란이나 다양한 부하 변동에 대한 적응력을 시뮬레이션으로 나타낸다.

  • PDF

실시간 차량 밀도에 대응하는 심층강화학습 기반 C-V2X 분산혼잡제어 (Deep Reinforcement Learning-Based C-V2X Distributed Congestion Control for Real-Time Vehicle Density Response)

  • 전병철;양우열;조한신
    • 전기전자학회논문지
    • /
    • 제27권4호
    • /
    • pp.379-385
    • /
    • 2023
  • 분산혼잡제어는 높은 밀도의 차량 네트워크에서 채널 혼잡을 완화하고, 통신 성능을 개선하는 기술이다. 기존 분산혼잡제어 기술은 quality of service(QoS) 요구사항을 고려하지 않은 채 채널 혼잡을 줄이는 방향으로 동작한다. 이러한 분산혼잡제어 알고리즘 설계는 과도한 DCC 동작으로 인하여 다른 QoS를 저하시킬 수 있다. 이와 같은 문제를 해결하기 위해 심층강화학습 기반 QoS 적응형 DCC 알고리즘을 제안한다. 시뮬레이션은 준 실환경 시뮬레이터를 기반으로 동적인 차량 밀도를 생성하여 평가하였으며, 시뮬레이션 결과 기존 DCC 알고리즘 보다 목표 QoS에 더 근접한 결과를 확인하였다.

신경컴퓨터(Neural Network)을 이용한 로보트 제어

  • 오세영
    • 정보와 통신
    • /
    • 제9권11호
    • /
    • pp.70-79
    • /
    • 1992
  • 제6세대 컴퓨터로 불리는 신경컴퓨터는 학습과 병렬처리에 의해 인간의 두뇌 기능을 모방한다. 인간의 두뇌는 시각인식, 음성인식, 촉각감지 등 패턴인식뿐 아니라 인간의 복잡한 신체구조를 시각, 촉각 같은 감각기관의 도움을 얻어 움직이는 중요한 역할도 한다. 바로 이 모터제어(motor control) 역시 신경회로가 담당하기 때문에 이를 기계적 신체에 해당하는 로보트 또는 광범위하게 기계, 비행기, 산업공정에 응용하는 것은 매우 자연스럽게 보인다. 이처럼 신경회로가 제어에 응용되는 것을 신경제어 (neurocontrol)라 하고 이를 이용한 기계를 지능기계(intelligent machinery)라 한다. 지능기계는 기본적으로 인간처럼 경험축적 학습 불확실한 환경에서의 적응 자기진단 등의 장점을 가지고 있다. 신경회로의 지극히 광범위한 응용분야중 신경제어는 가장 먼저 실현될 가능성이 높다. 실제로 로보트나 공정제어(process control)처럼 복잡한 비선형 시스템의 제어는 다량의 센서 정보에 기초한 실시간 제어를 필수로 하며 이는 신경회로를 사용함으로써 가장 효율적, 경제적으로 구현할 수 있다. 실제로 신경제어는 전세계적으로 이미 시스템 제어에 응용되어 좋은 결과를 내고 있다. 신경회로의 로보트나 자동화 응용은 학술적인 측면에서는 복잡한 비선형 시스템의 지능제어 (intelligent control)문제에 대한 신선한 해결책을 마련해줄 뿐 아니라 산업자동화라는 막대한 시장을 뒤로 하고 있어 이론에서 실제에 걸쳐 가장 광범위한 파급효과를 가지는 최첨단 기술로 보여진다. 고부가가치 상품을 통한 국제 경쟁력 제고의 차원에서도 정부, 기업 등의 과감한 연구 개발투자가 선행되어야 한다. 특히 이 분야의 연구는 선진국도 최근에 시작한 점으로 보아 정부, 기업이 이에 대한 연구 개발투자를 현명하게 할 경우에 세계적 기술 경쟁력도 확보할 수 있을 것이다. 본 해설에서는 로보트 및 시스템 제어에 관한 기초 이론을 설명하고 신경회로 적용기술을 소개하고 기존 방법과 비교 했을 때의 우월성, 전세계적인 응용연구, 국내외 연구개발 현황, 상업화 가능성, 산업계 응용례, 기술상의 문제점, 향후 전망 등을 다루기로 한다.

  • PDF