• Title/Summary/Keyword: 적응 퍼지 이진화

Search Result 8, Processing Time 0.024 seconds

Recognition System of Passports by Using Enhanced Fuzzy Neural Networks (개선된 퍼지 신경망을 이용한 여권 인식 시스템)

  • 류재욱;김광백
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.155-161
    • /
    • 2003
  • 출입국 관리 절차를 간소화하는 방안의 하나로 퍼지 신경망을 이용한 여권 인식 시스템을 제안한다. 제안된 여권 인식 방법은 소벨 연산자와 수평 스미어링, 윤곽선 추적 알고리즘을 적용하여 코드의 문자열 영역을 추출한다 여권의 문자열 영역은 OCR 문자 서체로 구성되어 있고, 명도 차이가 다양하게 나타난다. 따라서 추출된 문자열 영역을 블록 이진화와 평균 이진화를 각각 수행하고 그 결과들을 AND 비트 연산을 취하여 적응적으로 이진화한다. 이진화된 문자열 영역에 대해서 개별 코드의 문자들을 복원하기 위하여 CDM(Conditional Dilation Morphology) 마스크를 적용한 후, 역 CDM마스크와 HEM(Hit Erosion Morphology)마스크를 적용하여 잡음을 제거한다 잡음이 제거된 문자열 영역에 대해 수직 스미어링을 적용하여 개별 코드의 문자를 추출한다. 추출된 개별 코드의 인식은 퍼지 ART 알고리즘을 개선하여 RBF 네트워크의 중간층으로 적용하는 퍼지 RBF 네트워크와 개선된 퍼지 ART 알고리즘과 지도 학습을 결합한 퍼지 자가 생성 지도 학습 알고리 즘을 각각 제안하여 여권의 개별 코드 인식에 적용한다. 제안된 방법의 성능을 확인하기 위해서 실제 여권 영상을 대상으로 실험한 결과, 제안된 추출 및 인식 방법이 여권 인식에서 우수한 성능이 있음을 확인하였다.

  • PDF

An adaptive Fuzzy Binarization (적응 퍼지 이진화)

  • Jeon, Wang-Su;Rhee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.6
    • /
    • pp.485-492
    • /
    • 2016
  • A role of the binarization is very important in separating the foreground and the background in the field of the computer vision. In this study, an adaptive fuzzy binarization is proposed. An ${\alpha}$-cut control ratio is obtained by the distribution of grey level of pixels in a sliding window, and binarization is performed using the value. To obtain the ${\alpha}$-cut, existing thresholding methods which execution speed is fast are used. The threshold values are set as the center of each membership function and the fuzzy intervals of the functions are specified with the distribution of grey level of the pixel. Then ${\alpha}$-control ratio is calculated using the specified function and binarization is performed according to the membership degree of the pixels. The experimental results show the proposed method can segment the foreground and the background well than existing binarization methods and decrease loss of the foreground.

A Crack Detection of Lens using Adaptive Binarization (적응적 이진화를 이용한 렌즈의 흠집 검출)

  • Ahn, Ha-jun;Park, Jae-woo;Kim, Kwang Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.517-519
    • /
    • 2016
  • 본 논문에서는 적응적 이진화 기법을 적용하여 흠집 영역을 검출한다. 제안된 방법은 안경 렌즈 영상에서 명암 대비를 적용하여 렌즈의 명암을 강조한다. 명암이 강조된 영상에서 렌즈 밖의 배경 영역은 흠집 검출에 불필요하므로 개선된 평균 이진화 기법을 적용한 후에 렌즈의 윤곽선을 검출하여 렌즈 이외의 배경을 제거한다. 렌즈 이외의 배경이 제거된 렌즈 영상에서 렌즈 내부에 명암대비를 적용하여 렌즈 내부의 배경과 흠집의 명암을 강조한다. 명암이 강조된 렌즈 내부 영역에서 적응적 이진화 기법을 적용하여 흠집과 잡음을 검출한다. 잡음은 중간값 필터를 적용하여 제거한 후에 흠집 영역을 추출한다. 추출된 흠집 영역을 렌즈의 중심으로부터의 거리와 흠집의 크기를 퍼지 추론 규칙을 적용하여 눈에 미치는 영향 정도를 분석한다. 본 논문에서 제안된 방법의 성능을 분석하기 위해 CHEMI, MID, HL, HM과 같은 시력 보정용 렌즈 영상 6장을 대상으로 실험한 결과, 제안된 방법이 기존 렌즈 흠집 추출 방법보다 흠집 영역이 정확하게 추출되었고 눈에 미치는 영향을 효과적으로 분석할 수 있는 가능성을 확인하였다.

  • PDF

Speaker-Adaptive Speech Synthesis by Fuzzy Vector Quantization Mapping (FVQ(Fuzzy Vector Quantization) 사상화에 의한 화자적응 음성합성)

  • 이진이;이광형
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.3 no.4
    • /
    • pp.3-20
    • /
    • 1993
  • 본 연구에서는 퍼지사상화(fuzzy mapping)에 의한 사상된(mapped) 코드북을 사용하는 화자적은 음성합성 알고리즘을 제안한다. 입력화자와 기준화자의 코드북은 신경망 클러스터링 알고리즘인 자율경쟁 학습을 사용하여 작성된다. 사상된 코드북은 입력 음성벡터에 대한 두 화자의 대응 코드벡터의 소속갑(membership value)으로 퍼지 히스토그랩을 작성하여 이들을 1차 결합함으로써 얻어지는 퍼지사상화에 의하여 작성된다. 음성합성시에는 사상된 코드북을 사용하여 입력화자의 음것을 퍼지 벡터양자화한 다음, CFM 연산으로 합성함으로써 입력화자에 적응된 합성음을 얻는다. 실험에서 여러 입력화자로 30대의 남성, 20대의 여성음을 사용하였고 기준음석으로 입력음성과는 다른 20대의 여성음성을 사용하였다.실험에 사용된 음성데이타는 문장/안녕하십니까/와/굿모닝/이다. 실험결과는 각각의 입력화자에 기준화자 음성이 적응된 합성음을 얻었다.

  • PDF

Adative Error Diffusion Using Fuzzy Relaxation Technique (퍼지 이완 방법을 이용한 적응적 오차 확산법)

  • 박양우;엄태억;장주석;하영호
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.5
    • /
    • pp.42-47
    • /
    • 1999
  • 연속 계조도 영상을 이진 영상(하프톤 영상)으로 변환하는 하프톤 기법중 대표적인 두 방법은 순차적 디더법과 오차 확산법이 있다. 이 중에서 오차확산법은 예리한 하프톤 영상을 얻기위한 우수한 하프톤 기법으로 잘 알려져 있다. 그러나 알고리듬에 기인하는 여러 인공잡음들이 발생하므로 이를 개선하기 위한 방법으로 최적의 필터 계수를 얻기 위한 많은 연구가 진행되었다. 본 논문에서는 연속 계조도 입력 영상과 하프톤 영상사이의 양자화 오차를 영상에 적응적이며 최적으로 확산시키기 위해 양자화 오차를 초기 가능성의 퍼지 부분 집합으로 정의하였다. 이러한 퍼지 부분 집합의 중심화소에 대해 이웃한 화소의 오차 가능성을 고려한 후 FAM 규칙을 이용하여 각각 화소들의 오차 가능성을 영상에 따라 적응적으로 갱신하였으며 이를 원영상에 더하여 다시 양자화 과정을 번복하는 퍼지 이완 알고리듬을 이용한 오차 확산법을 제안하였다. 제안한 방법을 이용하여 얻은 결과를 최적 필터 계수를 구하기 위한 기존의 방법의 결과 영상과 비교 분석하였다.

  • PDF

Automatic Defect Inspection with Adaptive Binarization and Bresenham's Algorithm for Spectacle Lens Products (적응적 이진화 기법과 Bresenham's algorithm을 이용한 안경 렌즈 제품의 자동 흠집 검출)

  • Kim, Kwang Baek;Song, Dong Heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1429-1434
    • /
    • 2017
  • In automatic defect detection problem for spectacle lenses, it is important to extract lens area accurately. Many existing detection methods fail to do it due to insufficient minute noise removal. In this paper, we propose an automatic defect detection method using Bresenham algorithm and adaptive binarization strategy. After usual average binarization, we apply Bresenham algorithm that has the power in extracting ellipse shape from image. Then, adaptive binarization strategy is applied to the critical minute noise removal inside the lens area. After noise removal, We can also compute the influence factor of the defect based on the fuzzy logic with two membership functions such as the size of the defect and the distance of the defect from the center of the lens. In experiment, our method successfully extracts defects in 10 out of 12 example images that include CHEMI, MID, HL, HM type lenses.

Speaker-Adaptive Speech Synthesis based on Fuzzy Vector Quantizer Mapping and Neural Networks (퍼지 벡터 양자화기 사상화와 신경망에 의한 화자적응 음성합성)

  • Lee, Jin-Yi;Lee, Gwang-Hyeong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.1
    • /
    • pp.149-160
    • /
    • 1997
  • This paper is concerned with the problem of speaker-adaptive speech synthes is method using a mapped codebook designed by fuzzy mapping on FLVQ (Fuzzy Learning Vector Quantization). The FLVQ is used to design both input and reference speaker's codebook. This algorithm is incorporated fuzzy membership function into the LVQ(learning vector quantization) networks. Unlike the LVQ algorithm, this algorithm minimizes the network output errors which are the differences of clas s membership target and actual membership values, and results to minimize the distances between training patterns and competing neurons. Speaker Adaptation in speech synthesis is performed as follow;input speaker's codebook is mapped a reference speaker's codebook in fuzzy concepts. The Fuzzy VQ mapping replaces a codevector preserving its fuzzy membership function. The codevector correspondence histogram is obtained by accumulating the vector correspondence along the DTW optimal path. We use the Fuzzy VQ mapping to design a mapped codebook. The mapped codebook is defined as a linear combination of reference speaker's vectors using each fuzzy histogram as a weighting function with membership values. In adaptive-speech synthesis stage, input speech is fuzzy vector-quantized by the mapped codcbook, and then FCM arithmetic is used to synthesize speech adapted to input speaker. The speaker adaption experiments are carried out using speech of males in their thirties as input speaker's speech, and a female in her twenties as reference speaker's speech. Speeches used in experiments are sentences /anyoung hasim nika/ and /good morning/. As a results of experiments, we obtained a synthesized speech adapted to input speaker.

  • PDF

Dynamic Adaptive Binarization Method Using Fuzzy Trapezoidal Type and Image Stepwise Segmentation (퍼지의 사다리꼴 타입과 영상 단계적 분할을 이용한 동적 적응적 이진화 방법)

  • Lee, Ho Chang
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.5
    • /
    • pp.670-675
    • /
    • 2022
  • This study proposes an improved binarization method to improve image recognition rate. The research goal is to minimize the information loss that occurs during the binarization process, and to transform the object of the original image that cannot be determined through the transformation process into an image that can be judged. The proposed method uses a stepwise segmentation method of an image and divides blocks using prime numbers. Also, within one block, a trapezoidal type of fuzzy is applied. The fuzzy trapezoid is binarized by dividing the brightness histogram area into three parts according to the degree of membership. As a result of the experiment, information loss was minimized in general images. In addition, it was found that the converted binarized image expressed the object better than the original image in the special image in which the brightness region was tilted to one side.