• Title/Summary/Keyword: 적응 최근접 이웃

Search Result 11, Processing Time 0.027 seconds

On the use of weighted adaptive nearest neighbors for missing value imputation (가중 적응 최근접 이웃을 이용한 결측치 대치)

  • Yum, Yunjin;Kim, Dongjae
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.4
    • /
    • pp.507-516
    • /
    • 2018
  • Widely used among the various single imputation methods is k-nearest neighbors (KNN) imputation due to its robustness even when a parametric model such as multivariate normality is not satisfied. We propose a weighted adaptive nearest neighbors imputation method that combines the adaptive nearest neighbors imputation method that accounts for the local features of the data in the KNN imputation method and weighted k-nearest neighbors method that are less sensitive to extreme value or outlier among k-nearest neighbors. We conducted a Monte Carlo simulation study to compare the performance of the proposed imputation method with previous imputation methods.

On the Use of Sequential Adaptive Nearest Neighbors for Missing Value Imputation (순차 적응 최근접 이웃을 활용한 결측값 대치법)

  • Park, So-Hyun;Bang, Sung-Wan;Jhun, Myoung-Shic
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.6
    • /
    • pp.1249-1257
    • /
    • 2011
  • In this paper, we propose a Sequential Adaptive Nearest Neighbor(SANN) imputation method that combines the Adaptive Nearest Neighbor(ANN) method and the Sequential k-Nearest Neighbor(SKNN) method. When choosing the nearest neighbors of missing observations, the proposed SANN method takes the local feature of the missing observations into account as well as reutilizes the imputed observations in a sequential manner. By using a Monte Carlo study and a real data example, we demonstrate the characteristics of the SANN method and its potential performance.

Random projection ensemble adaptive nearest neighbor classification (랜덤 투영 앙상블 기법을 활용한 적응 최근접 이웃 판별분류기법)

  • Kang, Jongkyeong;Jhun, Myoungshic
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.3
    • /
    • pp.401-410
    • /
    • 2021
  • Popular in discriminant classification analysis, k-nearest neighbor classification methods have limitations that do not reflect the local characteristic of the data, considering only the number of fixed neighbors. Considering the local structure of the data, the adaptive nearest neighbor method has been developed to select the number of neighbors. In the analysis of high-dimensional data, it is common to perform dimension reduction such as random projection techniques before using k-nearest neighbor classification. Recently, an ensemble technique has been developed that carefully combines the results of such random classifiers and makes final assignments by voting. In this paper, we propose a novel discriminant classification technique that combines adaptive nearest neighbor methods with random projection ensemble techniques for analysis on high-dimensional data. Through simulation and real-world data analyses, we confirm that the proposed method outperforms in terms of classification accuracy compared to the previously developed methods.

Missing values imputation for time course gene expression data using the pattern consistency index adaptive nearest neighbors (시간경로 유전자 발현자료에서 패턴일치지수와 적응 최근접 이웃을 활용한 결측값 대치법)

  • Shin, Heyseo;Kim, Dongjae
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.3
    • /
    • pp.269-280
    • /
    • 2020
  • Time course gene expression data is a large amount of data observed over time in microarray experiments. This data can also simultaneously identify the level of gene expression. However, the experiment process is complex, resulting in frequent missing values due to various causes. In this paper, we propose a pattern consistency index adaptive nearest neighbors as a method of missing value imputation. This method combines the adaptive nearest neighbors (ANN) method that reflects local characteristics and the pattern consistency index that considers consistent degree for gene expression between observations over time points. We conducted a Monte Carlo simulation study to evaluate the usefulness of proposed the pattern consistency index adaptive nearest neighbors (PANN) method for two yeast time course data.

Gender Classification of Human Behaviors Using Structure Adaptive Self-organizing Map (구조적응 자기구성 지도를 이용한 인간 행동의 성별 분류)

  • 류중원;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.298-300
    • /
    • 2001
  • 본 논문에서는 구조적응 자기구성 지도 모델을 사용하여 인간 행동의 성별을 분류하는 인식기를 제안하였다. 26명의 사람이 '화난 상태' 혹은 '보통 상태'의 두가지 정서 하에서 '문 두드리기', '손 흔들기', '물건 들어올리기'의 세가지 동작을 수행하는 동안, 행위자 관절점의 속도나 위치 정보로부터 성별을 분류하였다. 또한 SASOM의 성능 비교 분석을 위하여 전통적인 SOM, 다층 퍼셉트론과 거의 두 가지 결합 모델, SASOM와 의사결정트리 결합 모델, 단일 의사 결정트리, $textsc{k}$-최근접 이웃 등의 인식기를 구현하여 성능을 비교분석 하였다. 실험 결과 SASOM 분류기가 가장 높은 이식률을 보였으며 분류기로서 유용함을 알 수 있었다.

  • PDF

Classification of Cancer-related Gene Expression Data Using Neural Network Classifiers (신경망 분류기를 이용한 암 관련 유전자 발현정보를 분류)

  • 권영준;류중원;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.295-297
    • /
    • 2001
  • 최근 생물 유전자 정보를 효과적으로 분석하기 위한 적절한 도구의 필요성이 대두되고 있다. 본 논문에서는 백혈병 환자의 골수로부터 얻어낸 DNA Microarray 유전 정보를 분류하여 환자가 가지고 있는 암의 종류를 예측하기 위한 최적의 특징추출방법과 분류 방법을 찾고자 한다. 이를 위해 피어슨 상관관계, 유클리디안 거리, 코사인 계수, 스피어맨 상관관계, 정보 이득, 상호 정보, 신호 대잡음비의 7가지 특징 추출 방법을 사용하였으며, 역전과 신경망, 의사결정 트리, 구조 적응형 자기구성 지도, $textsc{k}$-최근접 이웃 등 가지의 기계학습 분류기를 이용하여 분류 실험을 하였다. 실험결과, 피어슨 상관관계와 역전파 신경망을 이용한 분류 방법이 97.1%의 인식률을 보임을 알 수 있었다.

  • PDF

A Study on Adaptive Learning Model for Performance Improvement of Stream Analytics (실시간 데이터 분석의 성능개선을 위한 적응형 학습 모델 연구)

  • Ku, Jin-Hee
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.1
    • /
    • pp.201-206
    • /
    • 2018
  • Recently, as technologies for realizing artificial intelligence have become more common, machine learning is widely used. Machine learning provides insight into collecting large amounts of data, batch processing, and taking final action, but the effects of the work are not immediately integrated into the learning process. In this paper proposed an adaptive learning model to improve the performance of real-time stream analysis as a big business issue. Adaptive learning generates the ensemble by adapting to the complexity of the data set, and the algorithm uses the data needed to determine the optimal data point to sample. In an experiment for six standard data sets, the adaptive learning model outperformed the simple machine learning model for classification at the learning time and accuracy. In particular, the support vector machine showed excellent performance at the end of all ensembles. Adaptive learning is expected to be applicable to a wide range of problems that need to be adaptively updated in the inference of changes in various parameters over time.

감시정찰 센서네트워크의 표적 탐지 및 식별 알고리즘에 관한 연구

  • Sim, Hyeon-Min;Kim, Tae-Bok;Kim, Lee-Hyeong;Gang, Tae-In
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.11a
    • /
    • pp.324-328
    • /
    • 2007
  • 본 논문은 감시정찰 센서네트워크에서 센서노드의 주요 기능인 표적의 탐지 및 식별을 위한 알고리즘을 제안한다. 감시정찰 센서네트워크에서 각 센서노드는 노드의 크기 및 센서, 프로세서, 네트워크, 전원 등의 자원의 제약이 있기 때문에 침입하는 적의 탐지 및 종류 식별을 위해서는 효율적인 알고리즘의 선정과 최적화가 요구된다. 본 논문에서는 음향, 진동, PIR, 자기 센서 등을 이용하여 사람, 차량 및 궤도 차량의 침입을 탐지하기 위한 적응 임계값 알고리즘과 그 종류를 식별하기 위한 최대우도추정 기법, k-최근접 이웃 추정 기법에 기반한 표적의 탐지 및 식별 알고리즘을 제안한다. 실험결과 음향 및 진동 센서에 의한 차량의 탐지, PIR 센서에 의한 사람의 탐지가 가능함을 확인할 수 있었으며 주파수 특징점을 이용하여 차량과 궤도차량의 종류식별이 가능함을 확인할 수 있었다.

  • PDF

Adaptive Operation of Boryeong Dam Water Supply Adjustment Standards against Multi-year Droughts (다년 가뭄 대비 보령댐 용수공급 조정기준의 적응형 운영방안)

  • Kim, Gi Joo;Lee, Jae Hwang;Lee, Joohyung;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.373-373
    • /
    • 2022
  • 전세계적으로 기후변화로 인해 3년 이상의 기간동안 지속되는 다년 가뭄의 빈도와 심도가 증가하고 있으며, 이로 인한 피해도 증가하고 있다. 본 연구에서는 이를 반영하여 전국 다목적댐 및 용수댐에서 모두 주요 가뭄 대응 대책으로 사용되고 있는 현행 용수공급 조정기준을 개선하는 방안을 제안하고자 한다. 가장 먼저, 장기 기억 반영이 가능한 시계열 모형인 ARFIMA(Autoregressive Fractional Integrated Moving Average) 모델을 사용하여 다양한 강도의 장기 기억을 가지고 있는 연간 유입량을 생성하였다. 이후, 연간 유입량을 k-최근접 이웃 방법 기반의 배분 도구를 사용하여 10일 단위 유입량으로 분배하였으며 이를 대체 용수공급 조정기준을 생성하기 위한 입력 변수로 사용하였다. 새로운 용수공급 조정기준은 매 시점마다 새롭게 업데이트되는 정보를 통해 현행 기준과 함께 적응형으로 저수지 운영에 사용되었다. 다년 가뭄이 반영된 유입량으로 적응형으로 저수지 운영을 관측 유입량 하에서 빈도와 크기의 측면에서 분석을 시행하였다. 그 결과, 심각한 실패(물 부족 비율 30% 이상)의 빈도의 경우 현행 기준 운영 시 6.14%에서 적응형 운영 시행 시 2.99%로 개선되었지만, 전체 기간 동안의 신뢰도는 적응형 운영보다(26.42%) 현행 운영 하에서 더욱 나은 결과를 보였다(41.19%). 위와 같은 분석 결과는 심각한 실패의 빈도와 크기를 줄이는 용수공급 조정기준을 시행하는 원론적인 목적과 일치하기에, 본 연구에서 제안하는 다년 가뭄에 대비한 적응형 운영 방안은 향후 길게 지속되는 가뭄 조건에서 저수지 운영 정책으로 활용될 수 있음을 확인하였다.

  • PDF

On the Use of Modified Adaptive Nearest Neighbors for Classification (수정된 적응 최근접 방법을 활용한 판별분류방법에 대한 연구)

  • Maeng, Jin-Woo;Bang, Sung-Wan;Jhun, Myoung-Shic
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.6
    • /
    • pp.1093-1102
    • /
    • 2010
  • Even though the k-Nearest Neighbors Classification(KNNC) is one of the popular non-parametric classification methods, it does not consider the local features and class information for each observation. In order to overcome such limitations, several methods have been developed such as Adaptive Nearest Neighbors Classification(ANNC) and Modified k-Nearest Neighbors Classification(MKNNC). In this paper, we propose the Modified Adaptive Nearest Neighbors Classification(MANNC) that employs the advantages of both the ANNC and MKNNC. Through a real data analysis and a simulation study, we show that the proposed MANNC outperforms other methods in terms of classification accuracy.