• Title/Summary/Keyword: 적외선 이미지 개선

Search Result 13, Processing Time 0.017 seconds

Upgrading Filter Position Mechanism of SQUEAN

  • Lee, Hye-In;Pak, Soojong;Ji, Tae-Geun;Park, Woojin;An, Jongho;Kim, Sanghyuk;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.74.1-74.1
    • /
    • 2016
  • 미국 텍사스 주 맥도날드 천문대에 위치한 2.1m 망원경에 부착된 SQUEAN (SED Camera for QUasars in EArly uNiverse)은 2010년부터 운용되고 있는 CQUEAN을 바탕으로 개발된 적외선 영역 광학기기이다. 20개의 필터 장착이 가능한 필터 휠 제어 시스템을 가지고 있는 SQUEAN 시스템은 SMOP (SQUEAN Main Observation software package), KFC82 (KHU Filter wheel Control software package for McDonald 82 inch Telescope), KAP82 (KHU Auto-guiding software Package for McDonald 82 inch Telescope) 등으로 구성되어 있다. 그러나 대형 필터 휠을 제어하는 모터의 토크부족과 감속기의 백래시(Backlash)의 영향으로 오프셋의 오차가 커서 초기위치의 재설정 없이 하룻밤 이상 관측을 지속하는데 어려움이 있었다. 토크가 크고 인코더가 장착된 모터 교체와 제어 프로그램 등을 변경하고, 백래시의 영향을 최소화할 수 있도록 소프트웨어로 보정하였다. 또한, SMOP로부터 네트워크 통신을 통해 초기화용 필터 마스크(Initial Filter Mask:IFM)를 제작하여 돔 플랫 이미지에서 정확한 필터의 위치를 측정하는 기능을 도입하였다. 이 발표에서는, 개선된 하드웨어 및 소프트웨어의 내용과 테스트한 결과에 대해 보여준다.

  • PDF

A Study on a Digital Mirror System Offering Different Information by Distance (사용자와의 거리에 따라 다른 형태의 정보를 제공하는 디지털 거울 연구 - 사용자 니즈 분석을 중심으로 -)

  • Park, Ji-Eun;Lee, Moo-Heon;Hahm, Won-Sik;Soh, Yeon-Jung;Choi, Hea-Ju;Jung, Ji-Hong;Hahn, Min-Soo
    • Journal of the HCI Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.43-50
    • /
    • 2006
  • A mirror is a familiar tool for human beings who have been seeing themselves through it for a long time since it was created. As evolving Digital Technology, many approaches about digital mirrors which reflect not only the light, but also the information have been studied. Traditional mirrors on the wall do not need any special control to perform their automatic visual feedbacks, reflecting lights. On the contrary, digital mirrors can actively provide more information to the user than the traditional ones. In this paper, we propose an active digital mirror system of which functions are changed according to the user-mirror distance. First of all, we investigated users' behaviors on mirrors and categorized the interactions by user-mirror distance. Based on the previous result, we designed the user interface of the mirror, and developed a prototype which has three recognition modules: a distance measuring module using infrared sensor arrays, a user recognition module by computer vision technique, and a control perception module using infrared sensor grid. In addition, the next steps for improving the user-centered digital mirror system, and the possibility for developing a mirror-shaped computer system were suggested.

  • PDF

Evaluation of the Usefulness of the Self-developed Kw-infrared Reflective Marker in Non-coplanar Treatment (비동일면 치료 시 자체 제작한 Kw-infrared Reflective Marker의 유용성 평가)

  • Kwon, Dong-Yeol;Ahn, Jong-Ho;Park, Young-Hwan;Song, Ki-Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.1
    • /
    • pp.25-32
    • /
    • 2010
  • Purpose: In radiotherapy that takes into account respiration using a RPM (Real time Position Management, Varian, USA) system, which can treat in consideration of the movement of tumor, infrared reflective markers supplied by manufacturers cannot obtain respiratory signal if the couch rotates at a certain angle or larger. In order to solve this problem, the author developed the 3D infrared reflective marker named 'Kw-marker' that can obtain respiratory signal at any angle, and evaluate its usefulness. Materials and Methods: In order to measure the stability of respiratory signal, we put the infrared reflective marker on the 3D moving phantom that can reproduce respiratory movement and acquired respiratory signal for 3 minutes under each of 3 conditions (A: $couch\;0^{\circ}$, a manufacturer's infrared reflective marker B: $couch\;0^{\circ}$, Kw-marker C: $couch\;90^{\circ}$, Kw-marker). By analyzing the respiratory signal using a breath analysis program (Labview Ver. 7.0), we obtained the peak value, valley value, standard deviation, variation value, and amplitude value. In order to examine the rotation error and moving range of the target, we placed a B.B phantom on the 3D moving phantom, and obtained images at a couch angle of $0^{\circ}$ and $90^{\circ}$ using OBI, and then acquired the X, Y and Z values (mm) of the ball bearing at the center of the B.B phantom. Results: According to the results of analyzing the respiratory signal, the standard deviation at the peak value was A: 0.002, B: 0.002 and C: 0.003, and the stability of respiration for amplitude was A: 0.15%, B: 0.14% and C:0.13%, showing that we could get respiratory signal stably by using the Kw-marker. When the couch rotated $couch\;90^{\circ}$, the mean rotation error of the ball bearing, namely, the target was X: -1.25 mm, Y: -0.45 mm and Z: +0.1 mm, which were within 1.3 mm on the average in all directions, and the difference in the moving range of the target was within 0.3 mm. Conclusion: When we obtained respiratory signal using the Kw-marker in non-coplanar treatment where the couch rotated, we could acquire respiratory signal stably and the Kw-marker was effective enough to substitute for the manufacturer's infrared reflective marker. When the rotation error and moving range of the target were measured, there was little difference, indicating that the displacement of the reflector movement in couch rotation is the cause of change in the scale and amplitude of respiratory signal. If the converted value of amplitude height according to couch angle is studied further and applied, it may be possible to perform non-coplanar phase-based gating treatment.

  • PDF