• Title/Summary/Keyword: 적외선 열화상 기술

Search Result 53, Processing Time 0.023 seconds

Defect Sizing and Location by Lock-in Photo-Infrared Thermography (위상잠금 광-적외선 열화상 기술을 이용한 내분결함의 위치 및 크기 평가)

  • Choi, Man-Yong;Kang, Ki-Soo;Park, Jeong-Hak;Kim, Won-Tae;Kim, Koung-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.4
    • /
    • pp.321-327
    • /
    • 2007
  • In lock-in thermography, a phase difference between the defect area and the healthy area indicates the qualitative location and size of the defect. To accurately estimate these parameters, the shearing-phase technique has been employed which gives the shearing-phase distribution. The shearing-phase distribution has maximum, minimum, and zero points that help determine quantitatively the size and location of the subsurface defect. In experiment, the proposed technique is verified with artificial specimen and these related factors are analyzed.

Performance Evaluation of Image Saturation of Thermal Imaging Camera for the Fire Service (화재용 열화상 카메라의 영상포화특성 평가)

  • Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.26 no.2
    • /
    • pp.69-74
    • /
    • 2012
  • Thermal imaging technology based on IR sensor with high transmittance through the fire smoke is considered as one of the advanced technology for the fire service. The present study has been performed to investigate the image saturation characteristics with thermal condition of target and background and evaluate the performance of image quality based on the contrast transfer function (CTF). For the present testing conditions, TIC using BST sensor did not show the image saturation and the image quality based on the CTF was proportional to the temperature difference between target and background. This study can be utilized as preliminary study to improve reliability and technical development of TIC.

Defect detection of wall thinning defect in pipes using Lock-in photo-infrared thermography technique (위상잠금 광-적외선 열화상 기술을 이용한 감육결함이 있는 직관시험편의 결함 검출)

  • Kim, Kyoung-Suk;Jang, Su-Ok;Park, Jong-Hyun;Choi, Tae-Ho;Song, Jae-Geun;Jung, Hyun-Chul
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.317-321
    • /
    • 2008
  • Piping in the Nuclear Power plants (NPP) are mostly consisted of carbon steel pipe. The wall thinning defect is mainly occurred by the affect of the flow accelerated corrosion (FAC) of fluid which flows in carbon steel pipes. This type of defect becomes the cause of damage or destruction of piping. Therefore, it is very important to measure defect which is existed not only on the welding partbut also on the whole field of pipe. Over the years, Infrared thermography (IRT) has been used as a non destructive testing methods of the various kinds of materials. This technique has many merits and applied to the industrial field but has limitation to the materials. Therefore, this method was combined with lock-in technique. So IRT detection resolution has been progressively improved using lock-in technique. In this paper, the quantitative analysis results of the location and the size of wall thinning defect that is artificially processed inside the carbon steel pipe by using IRT are obtained.

  • PDF

STS Defect Structure Diagonis through the Infrared Thermography Mechanism and Flex-PDE Thermal Analysis (적외선 열화상 메카니즘과 Flex-PDE 열해석을 통한 STS 결함구조물 진단)

  • Park, Young Hoon;Yang, Sung Mo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.20-29
    • /
    • 2014
  • This research aims to study the new paradigm of NDE measurement which allows the identification of defect locations and sizes of a certain structure by measuring its surface temperature after applying heat. STS which has a certain defect is applied by the heat of 70000W by a heater. Its difference of STS surface temperature is measured by using Infrared thermography. The estimated result of STS experiment and that of theoretical analysis of Flex-PDE are compared and analyzed to diagnose STS defect. Moreover, this study can save time and money and improve accuracy in contrast to the existing ultrasonic NDE experiment. In addition, the new paradigm of NDT/NDE by reverse-engineering will be valid if the data of thermal analysis and temperature distribution from the specifications of many materials is accumulated and verified.

Thermal Environment Evaluation of Wooden House Using Infra-red Thermal Image and Temperature Difference Ratio (TDR) (적외선열화상과 온도차비율법을 이용한 목조 주택의 열환경평가)

  • Chang, Yoon-Seong;Eom, Chang-Deuk;Park, Jun-Ho;Lee, Jun-Jae;Park, Joo-Saeng;Park, Moon-Jae;Yeo, Hwan-Myeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.518-525
    • /
    • 2010
  • Infrared (IR) thermography which is the technique for detecting invisible infrared light emitted by objects due to their surface thermal condition and for producing an image of the light has been applied in various field without damaging the objects. It also could be used indirectly to examine the inside of an object. In this study, insulation property of wooden house in Korea Forest Research Institute (KFRI) was evaluated with according to "Thermal performance of building - Quantitative detection of thermal irregularities in building envelopes - infrared method (KS F 2829)". This method uses "Temperature Difference Ratio (TDR)" between outdoor wall surface and indoor wall surface of wooden building for evaluating its thermal performance. The thermal performance of a room on the 2nd floor of the wooden house was focused in this study and IR thermography on the indoor and outdoor surface of the house was captured by IR camera. Heat loss from the corner and the window of the wooden house as well as wall of the house was quantitatively evaluated and the invisible heat loss in the wall was detected. It is expected that the results from this study could contribute to improve the wooden building energy efficiency.

A Method of the Arc Detection using IR Camera (적외선 카메라를 이용한 아크 검출 기법)

  • Park, Geon-Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.01a
    • /
    • pp.321-322
    • /
    • 2016
  • 본 논문에서는 수배전반에서 부하 설비 또는 외부의 영향을 확인할 수 있는 장치 및 보호설비가 설치되어 있으나 자체 사고를 신속히 검출하고 판단할 수 있는 기술의 확보를 위하여 해상도가 낮은 저가의 열화상 센서에 고속 DSP(Digital Signal Process)를 사용하여 영상 처리 기법인 이차원 보간법 기술을 이용하여 아크플래시에 의해 발생되는 열 특성을 검출하고 검출된 데이터를 전송하여 전기화재사고를 미연에 방지할 수 있는 장치 개발을 위한 기초 특성 연구를 수행하였다.

  • PDF

Correlation Analysis of Cutter Acting Force and Temperature During the Linear Cutting Test Accompanied by Infrared Thermography (선형절삭시험과 적외선 열화상 측정을 통한 픽커터 작용력과 발생 온도의 상관관계 분석)

  • Soo-Ho Chang;Tae-Ho Kang;Chulho Lee;Hoyoung Jeong;Soon-Wook Choi
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.519-533
    • /
    • 2023
  • In this study, the linear cutting tests of pick cutters were carried out on a granitic rock with the average compressive strength over 100 MPa. From the tests, the correlation between the cutter acting force and the temperature measured by infrared thermal imaging camera during rock cutting was analyzed. In every experimental condition, the maximum temperature was measured at the rock surface where the chipping occurred, and the temperature generated in the rock was closely correlated with the cutter acting force. On the other hand, the temperature of a pick cutter increased up to only 36℃ above the ambient temperature, and the correlation with the cutter force was not obvious. This can be attributed to the short cutting distance under laboratory conditions and the high thermal conductivity of the tungsten carbide inserts. However, the relatively high temperature of the tungsten carbide inserts was found to be maintained. Therefore, it is recommended that a reinforcement between the insert and the head of a pick cutter or the quality improvement of silvering brazing in the production of a cutter is necessary to maintain the high cutting performance of a pick cutter.

Study on the Qualitative Defects Detection in Composites by Optical Infrared Thermography (적외선 열화상 기술을 이용한 복합재료의 결함 검출 정량화 연구)

  • Park, Hee-Sang;Choi, Man-Yong;Park, Jeong-Hak;Kim, Won-Tae;Choi, Won-Jong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.2
    • /
    • pp.150-156
    • /
    • 2011
  • In this paper, infrared thermography measurement technique has been used to develop standard measurement technique for nondestructive testing of composite materials which is widely used in aerospace industries. To increase the defect detection rate, the related experiment used the lock-in IR-thermographiy method. Therefore it is of considerable interest in the field of non-destructive testing for fast discontinuity detection by using ultrasonic lock-in infrared thermography. The result also shows that as the investigation period of light source is lengthened according to the thickness of specimen, the possibility of detecting defects gets higher as well. However, the reason why the result values were not favorable when less than 50 mHz of light source was provided is because it was difficult to detect defects as the defect parts became a state of thermal equilibrium in general when thermal diffusivity affects the entire materials.