• Title/Summary/Keyword: 적외분광분석

Search Result 307, Processing Time 0.046 seconds

Instrumental Analysis of Deposits on Paper Machine and Holes/Spots in Paper (제지공정 침착이물질 및 종이내 불순물 성분의 기기분석)

  • Ma, Geum-Ja;Lee, Bok-Jin
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.135-140
    • /
    • 1998
  • The constituents of deposits on paper machine and holes/spots in paper have been analyzed by a combination of analytical techniques, such as FTIR, Py-GC-MS, and EDS. FTIR spectroscopy was used prior to Py-GC-MS and EDS analysis, as a preliminary analysis. The analysis of organic components was carried out with a pyrolysis unit connected to a GC-MS, and inorganic components in ash were analyzed by SEM equipped with an EDS analyzer after pyrolysis at $590^{\circ}C$. The deposits on the dryer section were complex pitch, which was the mixture of the organic components of fatty acid ester and starch, and the inorganic components of talc, clay, and calcium carbonate. The complex pitch was estimated to come from the coated broke. We knew the deposits on the metering rod of sym-sizer were associated with the interaction of unstable alkyl keten dimer(AKD) and $CaCO_3$. The compositions of holes or spots varied considerably and were associated with chemical interaction within the system. The holes, spots, and blotches in the finished paper were PE and PP from pulp sources, complex pitch that were caused by the interaction of the different additives in the system, polymer such as flexible PVC that was used for the prop of palette, and hot melt as adhesives that came from the inadequate handling of broke. In addition, we identified that poly(caprolactam) which is used for forming fabrics or press felts, could be mixed with the raw materials by accident and results in streaks on coating.

  • PDF

Identification and Formation Factor of White Crystals on the Excavated Costumes from Shim Su-Ryun's Tomb (심수륜 묘 출토복식에서 발견되는 백색 결정의 동정 및 생성 요인)

  • Lee, Young Eun;Choi, Seokchan
    • Conservation Science in Museum
    • /
    • v.13
    • /
    • pp.37-44
    • /
    • 2012
  • White crystals on 46 costumes excavated from Shim Su-Ryun(1534 - 1589)'s tomb were examined their characterization and distribution. In 36 of such samples, white crystals with different shape and hardness were found. The formation of crystals did not correlated with a kind and use of textiles. However, crystals were found in the back side than the front of costume, specially around the marks of shrouding dead body. White crystals from 7 textiles were investigated by EPMA, XRD, or FT-IR. The composition of white crystal was analysed by EPMA and the structure characterization of crystals was used by X-ray diffraction. FT-IR spectroscopy was applied to check if non-crystalline compounds were also present. Mg and P were detected as the main element of white crystals and these compounds were identified a struvite and newberyite, the inorganic mineral magnesium ammonium phosphates. Struvite precipitation are influenced by many factors including concentration of Mg2+, NH4+, and PO43- ions, pH, and temperatures. It is assumed that magnesium, phosphorous, ammonia, a base material of struvite comes from decomposition product of human body. Tomb covered with lime, a unique triple-structure in Joseon period offering the basic condition, an anaerobe in a coffin, and high magnesium concentration of outer coffin with lime can be inferred as important factor for precipitation of crystals.

Determination of Calibration Curve for Total Nitrogen Contents Analysis in Fresh Rice Leaves Using Visible and Near Infrared Spectroscopy (벼 생체엽신 질소함량 측정을 위한 근적외선분광분석의 검량식 작성)

  • Kwon Young-Rip;Baek Mi-Hwa;Choi Dong-Chil;Choi Joung-Sik;Choi Yeong-Geun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.6
    • /
    • pp.394-399
    • /
    • 2005
  • Near Infrared Spectroscopy (NIRS) has been used as a tool for the rapid, accurate and nondestructive assay of the fresh rice leaf in nitrogen content. NIRS used in this study was visible and near infrared spectroscopy type instrument, Foss model 6500. To obtain a useful calibration equation, standard regression between the data was analyzed by chemical analysis and by NIRS method. Accuracy of calibration equation for nitrogen content on fresh leaf of rice were 0.879, 0.858 and 0.819, respectively. Accuracy of calibration equation after outlier treatment increased as 0.017, 0.02 and 0.061 improved each with 0.896, 0.878 and 0.880, respectively. Calibration equation combined using merge function after accuracy of calibration equation more increased by 0.911. Difference analysis value between calibration equation and lab value by kjeldahl showed $0.001\%$. With this as same result is the possibility of closing the deterioration of the sample in order to omit a construction and pulverization process it is judged with the fact that the nitrogen content measurement of the fresh rice leaf which the possibility of reducing an hour and an expense is by a near infrared spectroscopy technique will be possible.

Prediction on the Quality of Total Mixed Ration for Dairy Cows by Near Infrared Reflectance Spectroscopy (근적외선 분광법에 의한 국내 축우용 TMR의 성분추정)

  • Ki, Kwang-Seok;Kim, Sang-Bum;Lee, Hyun-June;Yang, Seung-Hak;Lee, Jae-Sik;Jin, Ze-Lin;Kim, Hyeon-Shup;Jeo, Joon-Mo;Koo, Jae-Yeon;Cho, Jong-Ku
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.29 no.3
    • /
    • pp.253-262
    • /
    • 2009
  • The present study was conducted to develop a rapid and accurate method of evaluating chemical composition of total mixed ration (TMR) for dairy cows using near infrared reflectance spectroscopy (NIRS). A total of 253 TMR samples were collected from TMR manufacturers and dairy farms in Korea. Prior to NIR analysis, TMR samples were dried at $65^{\circ}C$ for 48 hour and then ground to 2 mm size. The samples were scanned at 2 nm interval over the wavelength range of 400-2500 nm on a FOSS-NIR Systems Model 6500. The values obtained by NIR analysis and conventional chemical methods were compared. Generally, the relationship between chemical analysis and NIR analysis was linear: $R^2$ and standard error of calibration (SEC) were 0.701 (SEC 0.407), 0.965 (SEC 0.315), 0.796 (SEC 0.406), 0.889 (SEC 0.987), 0.894 (SEC 0.311), 0.933 (SEC 0.885) and 0.889 (SEC 1.490) for moisture, crude protein, ether extract, crude fiber, crude ash, acid detergent fiber (ADF) and neutral detergent fiber (NDF), respectively. In addition, the standard error of prediction (SEP) value was 0.371, 0.290, 0.321, 0.380, 0.960, 0.859 and 1.446 for moisture, crude protein, ether extract, crude fiber, crude ash, ADF and NDF, respectively. The results of the present study showed that the NIR analysis for unknown TMR samples would be relatively accurate. Use of the developed NIR calibration curve can obtain fast and reliable data on chemical composition of TMR. Collection and analysis of more TMR samples will increase accuracy and precision of NIR analysis to TMR.

Intra- and Inter-Variation of Protein Content in Soybean Cultivar Seonnogkong (선녹콩 개체간 및 개체내 단백질 함량 변이)

  • Im, Moo-Hyeog;Choung, Myoung-Gun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.spc
    • /
    • pp.78-83
    • /
    • 2008
  • Soybean [Glycine max (L.)] is a major source of protein for human and animal feed. Inter- and intra-genotype variation of soybean protein has been investigated by soybean researchers. However, limited sample amount of soybean single seed there is no report that investigated intra-plant variation of soybean protein within soybean plant. Recently a non-destructive NIR (near-infrared reflectance) spectroscopy using single seed grain to analyze seed protein was developed. The objectives of this study were to understand variation of seed protein content within plant and to determine the amount of minimum sample size which can represent protein content for a soybean plant. Frequency distribution of protein content within plant showed normal distribution. There was an intra-cultivar variation for protein content in soybean cultivar Seonnogkong. Difference of protein content among single plants of Seonnokong was recognized at 5% level. Seeds in lower position on plant stem tended to accumulate more protein than in higher position. There was significant difference for protein content between sample size 5 seeds and sample size of more than 5 seeds (10, 20, 30, 40, and 50 seeds) at a soybean plant with 57 seeds however no difference was recognized among sample size (5, 10, 20, and 30 seeds) at a soybean plant with 33 seeds. Around 20% seeds of soybean from single plant needed to determine the protein content to represent protein content of single soybean plant. This study is the first one to report evidence of intra-plant variation for proteincontent which detected by non-destructive NIR spectroscopy using single seed grain in soybean.

Effect of Silane Coupling Agent on Physical Properties of Polypropylene (PP)/Kenaf Fiber (KF) Felt Composites (폴리프로필렌/케나프 섬유 펠트 복합체 물성에 대한 실란커플링제의 영향)

  • Ku, Sun Gyo;Kim, Yu Shin;Kim, Dong Won;Kim, Ki Sung;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.37-42
    • /
    • 2018
  • In order to increase the compatibility of polypropylene (PP) and kenaf fiber (KF) felt, PP/KF and PP/KF/polyurethane (PU) felt composites were prepared by treating KF with three kinds of silane coupling agents. The concentration of silane coupling agents was fixed at 1 wt%. The chemical reaction between KF and silane coupling agents was confirmed by the existence of Si-O-Si and Si-O-C functional group bands appeared on FT-IR and X-ray photoelectron spectra (XPS). Thermal properties of PP/KF composites were investigated by DSC and TGA, and the thermal stability of PP/KF composites with treated KF increased. Based on tensile, flexural and impact properties of PP/KF and PP/KF/PU composites, 1-2 wt% of (3-aminopropyl)triethoxysilane (APS) contents were the optimum formulation as a compatibilizer. The tensile and flexural strength of the felt composites treated with the silane coupling agents were improved. This is mainly due to the improvement in the compatibility between PP and KF, which was confirmed by SEM images of the fractured surfaces after tension tests.

On Using Near-surface Remote Sensing Observation for Evaluation Gross Primary Productivity and Net Ecosystem CO2 Partitioning (근거리 원격탐사 기법을 이용한 총일차생산량 추정 및 순생태계 CO2 교환량 배분의 정확도 평가에 관하여)

  • Park, Juhan;Kang, Minseok;Cho, Sungsik;Sohn, Seungwon;Kim, Jongho;Kim, Su-Jin;Lim, Jong-Hwan;Kang, Mingu;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.251-267
    • /
    • 2021
  • Remotely sensed vegetation indices (VIs) are empirically related with gross primary productivity (GPP) in various spatio-temporal scales. The uncertainties in GPP-VI relationship increase with temporal resolution. Uncertainty also exists in the eddy covariance (EC)-based estimation of GPP, arising from the partitioning of the measured net ecosystem CO2 exchange (NEE) into GPP and ecosystem respiration (RE). For two forests and two agricultural sites, we correlated the EC-derived GPP in various time scales with three different near-surface remotely sensed VIs: (1) normalized difference vegetation index (NDVI), (2) enhanced vegetation index (EVI), and (3) near infrared reflectance from vegetation (NIRv) along with NIRvP (i.e., NIRv multiplied by photosynthetically active radiation, PAR). Among the compared VIs, NIRvP showed highest correlation with half-hourly and monthly GPP at all sites. The NIRvP was used to test the reliability of GPP derived by two different NEE partitioning methods: (1) original KoFlux methods (GPPOri) and (2) machine-learning based method (GPPANN). GPPANN showed higher correlation with NIRvP at half-hourly time scale, but there was no difference at daily time scale. The NIRvP-GPP correlation was lower under clear sky conditions due to co-limitation of GPP by other environmental conditions such as air temperature, vapor pressure deficit and soil moisture. However, under cloudy conditions when photosynthesis is mainly limited by radiation, the use of NIRvP was more promising to test the credibility of NEE partitioning methods. Despite the necessity of further analyses, the results suggest that NIRvP can be used as the proxy of GPP at high temporal-scale. However, for the VIs-based GPP estimation with high temporal resolution to be meaningful, complex systems-based analysis methods (related to systems thinking and self-organization that goes beyond the empirical VIs-GPP relationship) should be developed.

Determination of Seed Fatty Acids Using Near-Infrared Reflectance Spectroscopy(NIR) in Mung Bean(Vigna radiata) Germplasm (녹두 유전자원 지방산 함량 대량평가를 위한 근적외선분광법의 적용)

  • Lee, Young-Yi;Kim, Jung-Bong;Lee, Sok-Young;Kim, Min-Hee;Lee, Jung-Won;Lee, Ho-Sun;Ko, Ho-Cheol;Hyun, Do-Yoon;Gwag, Jae-Gyun;Kim, Chung-Kon;Lee, Yong-Beom
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.4
    • /
    • pp.582-587
    • /
    • 2010
  • 본 연구에서는 녹두 유전자원의 지방산 함량을 신속 대량 검정하는 기술을 개발하여 유전자원 활용 및 육종 촉진에 기여하고자 하였다. 유전자원 평가에 적합한 신속하고 비파괴적인 지방산 함량 평가기술을 개발하기 위해 공시자원 1,125점의 녹두 종자를 종실상태와 분쇄한 분말상태로 근적외선분광분석기(NIR)를 이용하여 1,104~2,494 nm에서의 스펙트럼을 얻고 이들 중 스펙트럼이 중복되지 않는 원산지가 다양한 대표자원 106점을 선발하여 일반적인 방법으로 지방산 함량을 분석하고, 이 값과 NIR 스펙트럼 흡광도값 간의 상관분석을 위한 calibration set로 활용하였다. 그 결과 palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid 및 total fatty acid에 대한 NIR 흡광도와의 상관계수 $R^2$이 각각 0.74, 0.18, 0.12, 0.72, 0.48 및 0.78로 나타났고, 이들 중 $R^2$가 높은 검량식을 미지의 시료 10점으로 검증한 결과, palmitic, linoleic 및 total fatty acid에 대한 검증 상관계수 $R^2$이 0.96, 0.74, 0.81로 나타나, 다양한 녹두 유전자원의 지방산함량 신속 대량 예측에 유효하게 활용될 수 있는 것으로 나타났다. 한편, 공시된 녹두 유전자원 115점 중에서 자원번호 IT208075 자원은 저 지방산 자원($14.24\;mg\;g^{-1}$)으로 선발되었고, IT163279 자원은 고 지방산 자원($18.43\;mg\;g^{-1}$)으로 선발되어 향후 녹두작물의 성분육종에 유용할 것으로 생각된다.

근적외 분광분석법을 이용한 황색종 잎담배의 화학성분 분석

  • 김용옥;이경구;장기철;김기환
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.20 no.2
    • /
    • pp.183-190
    • /
    • 1998
  • This study was conducted to analyze chemical components in flue-cured tobacco using near infrared spectroscopy(NIRS). Samples were collected in '96 and '97 crop year and were scanned in the wavelengths of 400 ~ 2500 nm by near infrared analyzer(NIRSystem Co., Model 6500). Calibration equations were developed and then analyzed flue-cured samples by NIRS. The standard error of calibration(SEC) and performance (SEP) of '96 crop year samples between NIRS and standard laboratory analysis(SLA) were 0.18% and 0.24% for nicotine, 1.60% and 1.77% for total sugar, 0.13% and 0.15% for total nitrogen, 0.58% and 0.68% for crude ash, 0.23% and 0.28% for ether extracts, and 0.09% and 0.08% for chlorine, respectively. The coefficient of determination($R^2$) of calibration and prediction samples between NIRS and SLA of '96 crop year samples was 0.94~0.99 and 0.83~0.97 depending on chemical components, respectively. The SEC and SEP of '97 crop year samples were similar to those of '96 crop year samples. The SEP of '97 crop year samples which were analyzed using '96 calibration equation was 0.32 % for nicotine, 2.72% for total sugar, 0.14 % for total nitrogen, 1.00 % for crude ash, 0.48 for ether extracts and 0.17% for chlorine, respectively. The prediction result was more accurate when calibration and prediction samples were produced in the same crop year than those of the different crop year. The SEP of '96 and '97 crop year samples using calibration equation which was developed '96 plus '97 crop year samples was similar to that of '96 crop year samples using 96 calibration equation and that of '97 crop year samples using '97 calibration equation, respectively. The SEP of '97 crop year samples using calibration equation which was developed '96 plus '97 crop year samples was lower than that of '97 crop year samples analyzed by '96 calibration equation. To improve the analytical inaccuracy caused by the difference of crop year between calibration and prediction samples, we need to include the prediction sample spectra which are different from calibration sample spectra in recalibration sample spectra, and then develop recalibration equation. Although the analytical result using NIR is not as good as SLA, the chemical component analysis using NIR can apply to tobacco leaves, leaf process or tobacco manufacturing process which demand the rapid analytical result.

  • PDF

Hyaluronic Acid Enhances the Dermal Delivery of Anti-wrinkle Peptide via Increase of Stratum Corneum Fluidity (히알루론산의 각질 유동성 향상을 통한 주름 개선 펩타이드 피부 흡수 촉진)

  • Kim, Yun-Sun;Kim, Daehyun;Kim, Yumi;Park, Sun-Gyoo;Lee, Cheon-Koo;Kang, Nae-Gyu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.4
    • /
    • pp.447-453
    • /
    • 2018
  • Acetyl hexapeptide 8 (AH8) is a synthetic peptide for anti-wrinkle cosmetics ingredient. It was developed as a mimetic of botox, patternd after N -terminal end of the protein synatosomal-associated protein 25 (SNAP25), a substrate of botulinum toxin. While AH8 has good efficacy and safety profiles, the permeation through the skin is poor. Therefore, we tried to enhance the transdermal delivery of AH8 by using of hyaluonic acid (HA), a linear polysaccharide of N-acetyl glucosamine and glucuronic acid. To investigate the effect of HA on AH8 penetration, we analyzed paraffin sections of $Micropig^{(R)}$ skin. Fluorescence labeled AH8 was applied to micropig skin with or without HA. The absorption of AH8 was limited to the stratum corneum (SC) without HA. On the other hand, AH8 penetrated to the dermis with HA. Especially, low molecular weight HA (5 kDa) was most efficient compared to 500 kDa HA and 2000 kDa HA. Experiments using fourier-transform infrared (FTIR) spectroscopy revealed that lower molecular weight HA had a tendency to increase the fluidity of the SC lipids more, which means enhancing the skin penetration. Therefore, HA could be expected to enhance the anti-wrinkle effect of AH8.