• Title/Summary/Keyword: 적설하중

Search Result 59, Processing Time 0.02 seconds

An Approximate Estimation of Snow Weight Using KMA Weather Station Data and Snow Density Formulae (기상청 관측 자료와 눈 밀도 공식을 이용한 적설하중의 근사 추정)

  • Jo, Ji-yeong;Lee, Seung-Jae;Choi, Won
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.2
    • /
    • pp.92-101
    • /
    • 2020
  • To prevent and mitigate damage to farms due to heavy snowfall, snow weight information should be provided in addition to snow depth. This study reviews four formulae regarding snow density and weight used in extant studies and applies them in Suwon area to estimate snow weight in Korea. We investigated the observed snow depth of 94 meteorological stations and automatic weather stations (AWS) data over the past 30 years (1988-2017). Based on the spatial distribution of snow depth by area in Korea, much of the fresh snow cover, due to heavy snowfall, occurred in Jeollabuk-do and Gangwon-do. Record snowfalls occurred in Gyeongsangbuk-do and Gangwon-do. However, the most recent heavy snowfall in winter occurred in Gyeonggi-do, Gyeongsangbuk-do, and Jeollanam-do. This implies that even if the snow depth is high, there is no significant damage unless the snow weight is high. The estimation of snow weight in Suwon area yielded different results based on the calculation method of snow density. In general, high snow depth is associated with heavy snow weight. However, maximum snow weight and maximum snow depth do not necessarily occur on the same day. The result of this study can be utilized to estimate the snow weight at other locations in Korea and to carry out snow weight prediction based on a numerical model. Snow weight information is expected to aid in establishing standards for greenhouse design and to reduce the economic losses incurred by farms.

Assessment and Improvement of Snow Load Codes and Standards in Korea (한국의 적설하중 기준에 대한 평가 및 개선방안)

  • Yu, Insang;Kim, Hayong;Necesito, Imee V.;Jeong, Sangman
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1421-1433
    • /
    • 2014
  • In this study, appropriate probability distribution and parameter estimation method were selected to perform snowfall frequency analysis. Generalized Extreme Value (GEV) and Probability Weighted Moment Method (PWMM) appeared to be the best fit for snowfall frequency analysis in Korea. Snowfall frequency analysis applying GEV and PWMM were performed for 69 stations in Korea. Peak snowfall corresponding to recurrence intervals were estimated based on frequency analysis while snow loads were calculated using the estimated peak snowfall and specific weight of snow. Design snow load map was developed using 100-year recurrence interval snow load of 69 stations through Kriging of ArcGIS. The 2009 Korean Building Code and Commentary for design snow load was assessed by comparing the design snow loads which calculated in this study. As reflected in the results, most regions are required to increase the design snow loads. Thus, design snow loads and the map were developed from based on the results. The developed design snow load map is expected to be useful in the design of building structures against heavy snow loading throughout Korea most especially in ungaged areas.

Determination of Resonable Unit Snow Weight and Greatest Gust Speed for Design Load Estimation of Agricultural Structures and their Applications (농업시설의 설계하중 산정을 위한 적정 단위적설중량과 순간최대풍속의 결정 및 적용)

  • 김문기;손정익;남상운;이동근
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1994.05a
    • /
    • pp.111-114
    • /
    • 1994
  • 상대적으로 사하중에 비해서 활하중 영향이 민감하게 작용하는 농업시설의 경우, 경제성 및 안정성에 근거한 구조설계를 위해서는 활하중의 결정요인의 정확한 분석을 통한 합리적인 설계하중의 산정이 필요하다. 단위적설 중량은 적설심에 따른 구분을 사용한다면 대부분 적설심 50cm 이하의 범위에 속하기 때문에 일률적으로 1.0kg/cm/$m^2$ 을 적용해야 하지만, 정확한 적설하중 산정을 위해서 기온에 따른 단위 적설중량의 변화를 분석할 필요가 있다. (중략)

  • PDF

Experimental Study on the Ground Support Conditions of Pipe Ends in Single Span Pipe Greenhouse (단동파이프하우스의 지점조건 분석을 위한 실험 연구)

  • Lee, Suk-Gun;Lee, Jong-Won;Kwak, Cheul-Soon;Lee, Hyun-Woo
    • Journal of Bio-Environment Control
    • /
    • v.17 no.3
    • /
    • pp.188-196
    • /
    • 2008
  • Single span pipe greenhouses (pipe houses) are widely used in Korea because these simple structures are suitable for construction by farmers thus reducing labor cost. However, these pipe houses are very weak and frequently damaged by heavy snow and strong wind. Pipe house is constructed by pipe fabricator, which is anchored to the ground by inserting each pipe end into ground to $30\sim40cm$, so the ground support condition of pipe end is not clear for theoretical analysis on greenhouse structure. This study was carried out to find out the suitable ground support condition needed f3r structural analysis when pipe house was designed. The snow and wind loading tests on the actual size pipe house were conducted to measure the collapsing shape, displacement and strain. The experimental results were compared with the structural analysis results for 4 different ground support conditions of pipe ends(fixed at ground surface, hinged at ground surface, fixed under ground and hinged under ground). The pipe house under snow load was collapsed at the eaves as predicted, and the actual strain at the windward eave and ground support under wind load was larger than that under snow load. The displacement was the largest at the hinged support under ground, followed by the hinged at ground surface, the fixed under ground and then the fixed at ground surface independent of displacement direction and experimental loading condition. The experimental results agreed most closely with the results of theoretical analysis at the fixed condition under ground among 4 different ground support conditions. As the results, it was recommended that the pipe end support condition of single span pipe greenhouse was the fixed under ground for structural analysis.

Extraction of Heavy Snowfall Vulnerable Area for 3 Representative Facilities Using GIS and Remote Sensing Techniques (GIS/RS를 이용한 3개의 대표 시설물별 폭설 취약지역 추출기법 연구)

  • Ahn, So-Ra;Shin, Hyung-Jin;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.1
    • /
    • pp.1-12
    • /
    • 2015
  • This study is to analyze the heavy snowfall vulnerable area of snow load design criteria for greenhouse, cattle shed and building using ground measured snow depth data and Terra MODIS snow cover area(SCA). To analyze the heavy snowfall vulnerable area, Terra MODIS satellite images for 12 years(2001-2012) were used to obtain the characteristics of snow depth and snow cover areas respectively. By comparing the snow load design criteria for greenhouse(cm), cattle shed($kg/m^2$), and building structure($kN/m^2$) with the snow depth distribution results by Terra MODIS satellite images, the facilities located in Jeolla-do, Chungcheong-do, and Gangwon-do areas were more vulnerable to exceed the current design criteria.

Measurement of snow depth using UAV : Case Studies for Daegwalleong (UAV(드론)를 이용한 적설깊이 측정 : 대관령 지역을 대상으로)

  • Lee, Sang Ku;Park, Jeong Ha;Kim, Dong Kyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.129-129
    • /
    • 2019
  • UAV는 시 공간적인 제약을 받지 않고, 경제적 효율적으로 자료를 수집할 수 있는 장점이 있어 토목, 방재, 농업분야 등 다양한 분야에서 차세대 관측 장비로 각광받고 있다. 특히 수자원 분야에서는 하천측량, 수심측량, 지하수 등 연구가 활발히 진행되고 있으나, 현재까지 적설에 대하여 UAV를 활용한 연구가 미비한 실정이다. 본 연구에서는 UAV 측량을 통하여 임의지역의 수치 표고 모형(DEM)을 추출하는 기술을 활용하여 적설깊이를 측정하는데 활용하였다. 먼저 강설 사상 이전 UAV를 통하여 연구지역의 고도를 측정하였으며, 강설 이후 재촬영 및 두 자료의 고도 차이를 계산하여 적설깊이를 계산하였다. UAV 적설깊이 자료의 검증을 위해 지상 관측지점을 설정하여 목측으로 적설을 관측하였으며, 추가적으로 건축물에 가해지는 하중을 계산하기 위해 적설밀도 및 SWE(Snow Water Equivalent)를 관측하였다. 연구지역은 평창군 대관령면 $1.3km^2$크기 내외 지역이며, 2019년 2, 3월 3개의 강설 사상에 대하여 분석하였다. 분석 결과 적설깊이는 토지피복 및 온도와 크게 상관되었으며, 적설하중은 융설의 영향으로 적설깊이와는 크게 상관되지 않는 것으로 확인되었다. 본 연구의 결과는 적설 피해 예측 및 예방에 활용될 수 있을 것이며, UAV를 통한 적설 측정의 적용가능성을 확인할 수 있었다.

  • PDF

An Evaluation of the Structural Stability of a Clip Type Prefabricated Greenhouse under Strong Wind and Heavy Snow Conditions (조립식 클립형 비닐하우스의 강풍 및 폭설시 구조 안정성 평가)

  • Ro, Kyoung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3423-3428
    • /
    • 2014
  • Numerical studies were performed to evaluate the structural safety of a greenhouse under both snow and wind loads. In the case of a wind load, fluid-structure interaction (FSI) method was used to consider the local pressure distributions on the greenhouse-induced by aerodynamic characteristics. The results showed that the maximum stress and deformation occur near the junction of pipe supports and rafters of the roof, where connecting clips are installed. Moreover, the wind load is a more severe condition than a snow load. Overall, these results will be used to design a prefabricated connecting clip with easy installation and low maintenance.

Analysis of Safety Wind Speed and Snow Depth for Single-Span Plastic Greenhouse according to Growing Crops (재배작물별 단동비닐하우스의 안전풍속 및 적설심 분석)

  • Lee, Jong-Won
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.4
    • /
    • pp.280-285
    • /
    • 2013
  • This study supplies basic data to develop a greenhouse model for reducing the damage to single-span greenhouses caused by strong winds and heavy snow. Single-span plastic greenhouses are predominantly used for growing crops in Korea. Thus, the safety wind speeds for single-span greenhouses were calculated and compared with the actual wind speeds and snow depths over a period of 8 years in different regions to analyze the structural safety of single-span greenhouses. The unit wind load and unit snow load were applied to different designs of single-span greenhouse according to the cultivated crop to achieve a structural analysis. As a result, the maximum section force for the wind and snow load was greatest for leaf and root vegetables, where the safety wind speeds for single-span greenhouses according to the cultivated crop were 17.7 m/s(leaf vegetables), 20.2 m/s (fruit vegetables), and 22.3 m/s (root vegetables). Thus, the single-span greenhouses were not found to be safe for the wind load in most regions, except for Hongcheon, Icheon and Sungju. Plus, the safety snow depths for single-span greenhouses according to the crop were 8.8 cm (leaf vegetables), 9.4 cm (fruit vegetables), and 11.8cm (root vegetables). Thus, when comparing the safety snow depths with the actual snow depths, the single-span greenhouses were not found to be safe. Therefore, to improve the safety of single-span greenhouses, the structures need reinforcement by reducing the interval between rafters or increasing the size of the pipes. However, additional research is needed.

Determination of Resonable Unit Snow Weight and Greatest Gust Speed for Design of Agricultural Structures and their Applications (농업시설의 설계하중 산정을 위한 적정 단위적설중량과 순간최대풍속의 결정 및 적용)

  • 손정익
    • Journal of Bio-Environment Control
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 1994
  • Wind load or snow load, acting on agricultural structures is working more sensitive than any other load and therefore plays an important role in determination of design loads of agricultural structures. In this study, unit snow weight, greatest gust speed and depth of snow fall were analyzed and applied to determine the amount of frames. The unit snow weights were statistically classified and calculated in the basis of mean temperature and showed considerable differences between the unit snow weights at below and above -1$^{\circ}C$. Equations for estimating greatest gust speed with fastest wind speed were developed for inland and seaside districts. The calculated values from developed equations were little higher than those from the current equation in general. The difference between the depths of snow cover and snow fall, which shows the possibility of reduction of design loads under the adequate management. Design wind speed estimated by a modified equation suggested the amount of frames less than those by current one, and the depth of snow fall as a design snow depth suggested the amount of frames more than those of snow cover. Therefore, it is very important to select the adequate design values considering the characteristics of agricultural structures.

  • PDF