• Title/Summary/Keyword: 적산모형

Search Result 65, Processing Time 0.031 seconds

Temperature-dependent developmental model of Echinothrips americanus Morgan(Thysanoptera: Thripidae) on pepper leaf (포인세티아총채벌레(Echinothrips americanus Morgan)의 온도발육모형)

  • Min-Jae Kong;Kwang-Ho Kim;Jae-Kun Kim;Hong-Hyun Park;Sung-Wook Jeon
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.4
    • /
    • pp.556-566
    • /
    • 2022
  • The temperature-dependent development of Poinsettia thrips, Echinothrips americanus was studied at eight constant temperatures (15.0, 17.5, 20.0, 22.5, 25.0, 27.5, 30.0, and 32.5±1℃), 65±5% RH and photoperiod of 16L:8D conditions. The developmental stages were divided into egg, 1st instar, 2nd instar, pre-pupa, pupa, and adult. The total developmental time in the immature stage was 40.4 days at 15.0℃ and 11.6 days at 30.0℃, and it decreased with increasing temperature. The lowest temperature of the whole immature period was 10.7℃, and the cumulative temperature to complete the entire immature period was 217.4 degree days. The optimal development temperature (Topt) for the whole immature stage was estimated to be in the range of 30.51-31.21℃. Topt for each immature stage was 31.64-35.47℃ at egg, 30.02-33.08℃ at 1st instar, 29.16-34.43℃ at 2nd instar, 27.63-29.21℃ at pre-pupa, and 29.81-30.12℃ at pupa. In the analysis of the six non-linear models, Logan 6 model was the most appropriate as Zi(Weighting Factors) was 0.18.

CUMAP : A Chill Unit Calculator for Spatial Estimation of Dormancy Release Date in Complex Terrain (Chill Unit 축적과 휴면해제시기 공간변이 추정 프로그램 : CUMAP)

  • Kim Kwang S.;Chung U ran;Yun Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.3
    • /
    • pp.177-182
    • /
    • 2004
  • A chill unit has been used to estimate chilling requirement for dormancy release and risk of freezing damage. A system that calculates chill units was developed to obtain site-specific estimates of dormancy release date for grapes and evaluated in Baekgu myun near Kimje City, Chunbuk, Korea from September 2002 to March 2003. The system utilized daily minimum and maximum temperature maps generated from spatial interpolation with temperature correction for topography. Hourly temperature was temporally interpolated from the daily data using a sine-exponential equation (Patron and Logan, 1981). Hourly chill units were determined from sigmoid, reverse sigmoid, and negatively increasing sigmoid functions based on temperature ranges and summed for 24 h. Cumulative daily chill units obtained from measurements did not increase until 20 October 2002, which was used as a start date for accumulation to estimate the dormancy release date. As a result, a map of dormancy release date in the study area was generated, assuming 800 chill units as a threshold for the chilling requirement. The chill unit accumulation system, implemented using Microsoft Visual Basic and C++ (Microsoft, Redmond, WA, USA), runs in the Windows environment with ArcView (ESRl Inc., Redlands, CA, USA).

Downscaling of Sunshine Duration for a Complex Terrain Based on the Shaded Relief Image and the Sky Condition (하늘상태와 음영기복도에 근거한 복잡지형의 일조시간 분포 상세화)

  • Kim, Seung-Ho;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.233-241
    • /
    • 2016
  • Experiments were carried out to quantify the topographic effects on attenuation of sunshine in complex terrain and the results are expected to help convert the coarse resolution sunshine duration information provided by the Korea Meteorological Administration (KMA) into a detailed map reflecting the terrain characteristics of mountainous watershed. Hourly shaded relief images for one year, each pixel consisting of 0 to 255 brightness value, were constructed by applying techniques of shadow modeling and skyline analysis to the 3m resolution digital elevation model for an experimental watershed on the southern slope of Mt. Jiri in Korea. By using a bimetal sunshine recorder, sunshine duration was measured at three points with different terrain conditions in the watershed from May 15, 2015 to May 14, 2016. The brightness values of the 3 corresponding pixel points on the shaded relief map were extracted and regressed to the measured sunshine duration, resulting in a brightness-sunshine duration response curve for a clear day. We devised a method to calibrate this curve equation according to sky condition categorized by cloud amount and used it to derive an empirical model for estimating sunshine duration over a complex terrain. When the performance of this model was compared with a conventional scheme for estimating sunshine duration over a horizontal plane, the estimation bias was improved remarkably and the root mean square error for daily sunshine hour was 1.7hr, which is a reduction by 37% from the conventional method. In order to apply this model to a given area, the clear-sky sunshine duration of each pixel should be produced on hourly intervals first, by driving the curve equation with the hourly shaded relief image of the area. Next, the cloud effect is corrected by 3-hourly 'sky condition' of the KMA digital forecast products. Finally, daily sunshine hour can be obtained by accumulating the hourly sunshine duration. A detailed sunshine duration distribution of 3m horizontal resolution was obtained by applying this procedure to the experimental watershed.

Parameterization of the Temperature-Dependent Development of Panonychus citri (McGregor) (Acari: Tetranychidae) and a Matrix Model for Population Projection (귤응애 온도발육 매개변수 추정 및 개체군 추정 행렬모형)

  • Yang, Jin-Young;Choi, Kyung-San;Kim, Dong-Soon
    • Korean journal of applied entomology
    • /
    • v.50 no.3
    • /
    • pp.235-245
    • /
    • 2011
  • Temperature-related parameters of Panonychus citri (McGregor) (Acarina: Tetranychidae) development were estimated and a stage-structured matrix model was developed. The lower threshold temperatures were estimated as $8.4^{\circ}C$ for eggs, $9.9^{\circ}C$ for larvae, $9.2^{\circ}C$ for protonymphs, and $10.9^{\circ}C$ for deutonymphs. Thermal constants were 113.6, 29.1, 29.8, and 33.4 degree days for eggs, larvae, protonymphs, and deutonymphs, respectively. Non-linear development models were established for each stage of P. citri. In addition, temperature-dependent total fecundity, age-specific oviposition rate, and age-specific survival rate models were developed for the construction of an oviposition model. P. citri age was categorized into five stages to construct a matrix model: eggs, larvae, protonymphs, deutonymphs and adults. For the elements in the projection matrix, transition probabilities from an age class to the next age class or the probabilities of remaining in an age class were obtained from development rate function of each stage (age classes). Also, the fecundity coefficients of adult population were expressed as the products of adult longevity completion rate (1/longevity) by temperature-dependent total fecundity. To evaluate the predictability of the matrix model, model outputs were compared with actual field data in a cool early season and hot mid to late season in 2004. The model outputs closely matched the actual field patterns within 30 d after the model was run in both the early and mid to late seasons. Therefore, the developed matrix model can be used to estimate the population density of P. citri for a period of 30 d in citrus orchards.

Improving usage of the Korea Meteorological Administration's Digital Forecasts in Agriculture: III. Correction for Advection Effect on Determination of Daily Maximum Temperature Over Sloped Surfaces (기상청 동네예보의 영농활용도 증진을 위한 방안: III. 사면 일 최고기온 결정에 미치는 이류효과 보정)

  • Kim, Soo-Ock;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.297-303
    • /
    • 2014
  • The effect of solar irradiance has been used to estimate daily maximum temperature, which make it possible to reduce the error inherent to lapse-rate based elevation difference correction in mountainous terrain. Still, recent observations indicated that the effect of solar radiation would need correction for estimation of daily maximum temperature. It was attempted to examine what would cause the variability of solar irradiance effect in determination of daily maximum temperature under natural field conditions and to suggest improved methods for estimation of the temperature distribution over mountainous regions. Temperature at 1500 and the wind speed for 1100 to 1500 were obtained at 10 validation sites with various topographical features including slope and aspect within a mountainous $50km^2$ catchment for 2012-2013. Lapse-rate corrected temperature estimates on clear days were compared with these observations, which would represent the differential irradiance effect among sloped surfaces. Results indicated a negative correlation between the mean wind speed and the estimation error. A simple scheme was derived from relationship between wind speed and estimation error for daily temperature to correct the effect of solar radiation. This scheme was incorporated into an existing model to estimate daily maximum temperature based on the effect of solar radiation. At 10 validation sites on clear days, estimates of 1500 LST temperature with and without the correction scheme were compared. It was found that a substantial improvement was achieved when the correction scheme was applied in terms of bias correction as well as error size reduction at all sites.

Emergence patterns of Hydropsyche kozhantschikovi (Trichoptera: Hydropsychidae) (줄날도래 (날도래목: 줄날도래과)의 우화 양상)

  • Hur, Jun-Mi;Jin, Young-Hun;Park, Sun-Jin;Won, Doo-Hee;Bae, Yeon-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.3 s.91
    • /
    • pp.267-273
    • /
    • 2000
  • Temperature-associated emergence patterns for a hydropsychid caddisfly, Hydropsyche kozhantschikovi, were studied from the Wangsuk creek in Kyonggi-do from April to June in 1999. Emerging adults were quantitatively collected by pyramidshaped emergence traps. Water temperature was hourly monitored in 1999. The emergence began at April 15 when the daily mean water temperature rose to ca. $10^{\circ}C$: it rapidly increased and peaked in ca. 10 days, and continued to May 25, lasting 40 days since the starting date. The average number of emerged adults was $35.8\;inds./m^2$ and their sex ratio was male (M) : female (F) = 1 : 2.04. The emergence of males was ca. 2 days earlier than that of females. Daily, the emergence was a bigeminans pattern representing the major peak (66.7%) just after dark ($19:00{\sim}21:00$) and theminor peak (11.1%) just before dawn ($05:00{\sim}07:00$). According to our degree dayaccumulation (DD) model, it respectively required 453.89DD (M: 440.48DD and F: 473.97 DD), 615.71DD (M: 610.18DD and F: 622.09DD), and 820.24DD (M: 828.25DD and F: 804.71DD) to begin, to reach the peak, and to finish the emergence.

  • PDF

Effects of Temperature on the Development of Gypsy moth (Lymantria dispar) (매미나방(Lymantria dispar) 발육에 미치는 온도의 영향)

  • A-Hae Cho;Hyo-Jeong Kim;Jin-Hee Lee;Ji-in Kim
    • Korean journal of applied entomology
    • /
    • v.62 no.4
    • /
    • pp.385-388
    • /
    • 2023
  • Gypsy moth (Lymantria dispar), a polyphagous insect pest belonging to the family Lymantriidae, is widely distributed in Korea, Japan, Siberia, Europe, and North America. They pose a threat to various host plants including pear trees, apple trees, and blueberries. Traditionally considered a forest pest, the increasing incursion of gypsy moths into agricultural land near forested areas has intensified damage to crops lacking effective control methods. This study aimed to investigate the temperature-dependent development of gypsy moths to enhance outbreak prediction and advance technology development. The effects of temperature on development of each life stage were investigated under constant temperature conditions of 18, 21, 24, 27, 30, and 33℃ (14L:10D, RH 60±5%) utilizing egg masses collected in Jeollanam-do Jangheung-gun in 2021. The results revealed that higher temperatures accelerated the development rate of the gypsy moth larvae with optimal development occurring at 30℃. However, the survival rate was lowest at 33℃. At the favorable temperature of 30℃, the total development period was 43.8 days for females and 42.5 days for males. The developmental threshold temperature were 13.1℃ for females and 12.5℃ for males, with effective accumulated temperature of 641.1 DD and 657.8 DD, respectively.

Effect of Growth and Yield of Soybean on Late-Sowing Compared to Optimal Sowing in the Southern Region of South Korea (남부지역에서 콩의 적기파종 대비 후기 파종이 생육과 수량에 미치는 영향)

  • Ye Rin Kim;Jong hyuk Kim;Il Rae Rho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.69 no.1
    • /
    • pp.61-69
    • /
    • 2024
  • Considering the threats of climate change, this study was conducted to investigate the influence of temperature and day-length on soybean growth and yield when sown late in comparison to the optimal sowing time in the southern region of the Korean Peninsula. Sowing was executed in 10-day intervals, including on July 1, 10, 20 and 30 and August 10, considering that the optimum sowing time of the three soybean varieties with different ecotypes is June 20. Emergence rates did not differ significantly between late-sowing and optimal sowing in all ecotypes; however, the number of days to emergence, flowering, and maturity was smaller after late sowing. A multiple-regression approach was used to test the effect of temperature and day length on the number of growing days after late sowing compared to the optimal sowing time. This analysis revealed that the number of days required from sowing to flowering was positively correlated with both day length and temperature, and the number of days from flowering to harvest was positively correlated with day length and negatively with temperature. A multiple regression equation can be calculated as follows: the number of days required from sowing to flowering (Y) = 3.177 + (0.030 × (sum of day length + sum of temperature)), and the number of days required from flowering to maturity (Y) = 20.945 + (0.021 × (sum of day length + sum of temperature)). Multiple growth parameters were significantly correlated with yield components, depending on growing days. Optimal sowing resulted in the best yield, while later sowing decreased yield compared to optimal sowing. To avoid a significant decrease in yield, early-maturing species should be sown by July 20, while late-maturing species should be sown by July 10.

Rhizosphere Enhances Removal of Organic Matter and Nitrogen from River Water in Floodplain Filtration (홍수터 여과를 이용한 하천수의 질소와 유기물 제거에 미치는 근권의 효과)

  • Jeong, Byeong-Ryong;Chung, Jong-Bae;Kim, Seung-Hyun;Lee, Young-Deuk;Cho, Hyun-Jong;Baek, Nam-Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.1
    • /
    • pp.8-15
    • /
    • 2003
  • If contaminated river water is sprayed over a floodplain, the microbial processes can simultaneously remove organic matter and nitrogen during the infiltration through the sediment profile. The effect of rhizosphere on the removal of organic matter and nitrogen from contaminated river water was investigated using floodplain lysimeters. River water was sprayed at a rate of $68.0L\;m^{-2}\;d^{-1}$ on the top of the lysimeters with or without weed vegetation on the surface, Concentrations of $NO_3$, $NH_4$ and dissolved oxygen (DO), and chemical oxygen demand (COD) and Eh in water were measured as functions of depth for 4 weeks after the system reached a steady state water flow and biological reactions. A significant reductive-condition for denitrification developed in the 30-cm surface profile of lysimeters with weeds. At a depth of 30 cm, COD and $NO_3$-N concentration decreased to 5.2 and $0.9mg\;L^{-1}$ from the respective influent concentrations of 18.2 and $9.8mg\;L^{-1}$. The removal of $NO_3$ in lysimeters with weeds was significantly higher than in those without weeds. Vegetation on the top was assumed to remove $NO_3$ directly by absorption and to create more favorable conditions for denitrification by supply of organic matter and rapid $O_2$ consumption, In the lysimeters without weeds, further removal of $NO_3$ was limited by the lack of an electron donor, i.e. organic matter. These results suggest that the filtration through native floodplains, which include rhizospheres of vegetation on the surface, can be effective for the treatment of contaminated river water.

Development Model of the Foxglove Aphid, Aulacorthum solani (Kaltenbach) on Lettuce (상추에서의 싸리수염진딧물(Aulacorthum solani)의 발육과 발육모형)

  • Lee, Sang-Guei;Kim, Hyeong-Hwan;Kim, Tae-Heung;Park, Gil-Jun;Kim, Kwang-Ho;Kim, Ji-Soo
    • Korean journal of applied entomology
    • /
    • v.47 no.4
    • /
    • pp.359-364
    • /
    • 2008
  • The development of Aulacorthum solani (Kaltenbach) was studied at temperatures ranging from 12.5 to $27.5^{\circ}C$ under $65{\pm}5%$ RH, and a photoperiod of 16:8 (L:D). Mortality of $1st{\sim}2nd$ nymph was higher than that of $3rd{\sim}4th$ nymph at the most temperature ranges whereas at high temperature of $27.5^{\circ}C$, more $3{\sim}4th$ nymph stage individuals died. The total developmental time ranged from 16.9 days at $12.5^{\circ}C$ to 6.6days at $22.5^{\circ}C$, suggesting that higher the temperature, faster the development. However, at higher temperature of $25^{\circ}C$ the development took 7.4 days. The lower developmental threshold temperature and effective accumulative temperatures for the total immature stage were $0.08^{\circ}C$ and 162.8 day-degreeslated development. The nonlinear shape of temperature rewas well described by the modified Sharpe and DeMichele model. When the normalized cumulative frequency distributions of developmental times for each life stage were fitted to the three-parameter Weibull function, attendance of shortened developmental times was apparent with in $1{\sim}2nd$ nymph, $3{\sim}4th$ nymph, and total nymph stages in descending order. The coefficient of determination $r^2$ ranged between 0.86 and 0.91.