DOI QR코드

DOI QR Code

Effect of Growth and Yield of Soybean on Late-Sowing Compared to Optimal Sowing in the Southern Region of South Korea

남부지역에서 콩의 적기파종 대비 후기 파종이 생육과 수량에 미치는 영향

  • Ye Rin Kim (Department of Applied Life Science, Gyeongsang National University) ;
  • Jong hyuk Kim (Department of Applied Life Science, Gyeongsang National University) ;
  • Il Rae Rho (Department of Agronomy, Gyeongsang National University)
  • 김예린 (경상국립대학교 응용생명과학부) ;
  • 김종혁 (경상국립대학교 응용생명과학부) ;
  • 노일래 (경상국립대학교 농학과)
  • Received : 2024.02.14
  • Accepted : 2024.02.26
  • Published : 2024.03.01

Abstract

Considering the threats of climate change, this study was conducted to investigate the influence of temperature and day-length on soybean growth and yield when sown late in comparison to the optimal sowing time in the southern region of the Korean Peninsula. Sowing was executed in 10-day intervals, including on July 1, 10, 20 and 30 and August 10, considering that the optimum sowing time of the three soybean varieties with different ecotypes is June 20. Emergence rates did not differ significantly between late-sowing and optimal sowing in all ecotypes; however, the number of days to emergence, flowering, and maturity was smaller after late sowing. A multiple-regression approach was used to test the effect of temperature and day length on the number of growing days after late sowing compared to the optimal sowing time. This analysis revealed that the number of days required from sowing to flowering was positively correlated with both day length and temperature, and the number of days from flowering to harvest was positively correlated with day length and negatively with temperature. A multiple regression equation can be calculated as follows: the number of days required from sowing to flowering (Y) = 3.177 + (0.030 × (sum of day length + sum of temperature)), and the number of days required from flowering to maturity (Y) = 20.945 + (0.021 × (sum of day length + sum of temperature)). Multiple growth parameters were significantly correlated with yield components, depending on growing days. Optimal sowing resulted in the best yield, while later sowing decreased yield compared to optimal sowing. To avoid a significant decrease in yield, early-maturing species should be sown by July 20, while late-maturing species should be sown by July 10.

남부지방(진주)에서 콩 생태형에 따라 적기파종 이후 파종 시기를 달리하였을 때 온도와 일장이 생육일수 및 수량에 미치는 영향을 조사한 결과는 다음과 같다. 1. 적기파종 이후 파종시기를 달리하여 파종하였을 때 모든 생태형에서 출현일, 개화소요일수, 전체 생육일수는 단축되었다. 2. 일장과 온도가 생육일수에 미치는 영향을 다중회귀분석으로 분석한 결과 파종~개화기까지 소요일수는 일장과 온도 모두 정의 상관이였고, 개화기~수확기까지 소요일수는 일장은 정의 상관, 온도는 부의 상관이 있었다. 3. 추정 회귀모형은 파종~개화까지 소요일수(Y) = 3.177 + (0.030 × (누적일장 + 적산온도)), 개화기~수확기까지 소요일수는 (Y) = 20.945 + (0.021 × (누적일장+적산온도))인 것으로 나타났다. 4. 수량은 적기파종에서 가장 높았고 적기파종 이후 늦게 파종할수록 수량이 급격히 감소하여 조생종은 7월 20일, 중만생종은 7월 10일 이전까지는 파종을 해야 급격한 수량감소를 피할 수 있을 것으로 보인다.

Keywords

Acknowledgement

이 논문은 농촌진흥청 공동연구사업(과제번호:PJ015705022022)의 지원을 받았으며, 이에 감사합니다.

References

  1. Alin, A. 2010. Multicollinearity. Wiley Interdisciplinary Reviews: Computational Statistics. 2(3) : 370-374. https://doi.org/10.1002/wics.84
  2. Chen, G. and P. Wiatrak. 2010. Soybean development and yield are influenced by planting date and environmental conditions in the southeastern coastal plain, United States. Agronomy Journal. 102(6) : 1731-1737.
  3. Cordova, S. C., S. V. Archontoulis, and M. A. Licht. 2020. Soybean profitability and yield component response to nitrogen fertilizer in Iowa. Agrosystems, Geosciences & Environment. 3(1) : e20092.
  4. Gibson, L. R. and R. E. Mullen. 1996. Influence of day and night temperature on soybean seed yield. Crop Science. 36(1) : 98-104. https://doi.org/10.2135/cropsci1996.0011183X003600010018x
  5. Grewal, R., J. A. Cote, and H. Baumgartner. 2004. Multicollinearity and measurement error in structural equation models: Implications for theory testing. Marketing Science. 23(4) : 519-529. https://doi.org/10.1287/mksc.1040.0070
  6. Hatfield, J. L., K. J. Boote, B. A. Kimball, L. H. Ziska, R. C. Izaurralde, D. Ort, A. M. Thomson, and D. Wolfe. 2011. Climate impacts on agriculture: implications for crop production. Agronomy Journal. 103(2) : 351-370.
  7. Kantolic, A. G., G. E. Peralta, and G. A. Slafer. 2013. Seed number responses to extended photoperiod and shading during reproductive stages in indeterminate soybean. European Journal of Agronomy. 51 : 91-100. https://doi.org/10.1016/j.eja.2013.07.006
  8. Kim, D. J., J. H. Roh, J. G. Kim, and J. I. Yun. 2013. The Influence of Shifting Planting Date on Cereal Grains Production under the Projected Climate Change. Korean Journal of Agricultural and Forest Meteorology. 15(1) : 26-39. https://doi.org/10.5532/KJAFM.2013.15.1.026
  9. Kim, J. H., C. K. Kang, and I. R. Rho. 2023. Growth and yield responses of soybean according to subsurface fertigation. Agronomy Journal. 115(4) : 1877-1891.
  10. KMA (Korea Meteorological Administration). 2023. Weather observation using automated synoptic observation system. https://data.kma.go.kr/cmmn/main.do (Last accessed on Dec. 20. 2023).
  11. KOSIS (Korean Statistical Information Service). 2023. Crop production survey in poduction of legumes. https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1ET0025&conn_path=I2 (Last accessed on Dec. 27. 2023).
  12. Kucharik, C. J. and S. P. Serbin. 2008. Impacts of recent climate change on Wisconsin corn and soybean yield trends. Environmental Research Letters. 3(3) : 034003.
  13. Lee, J. E., G. H. Jung, S. K. Kim, M. T. Kim, S. H. Shin, and W. T. Jeon. 2019. Effects of growth period and cumulative temperature on flowering, ripening and yield of soybean by sowing times. The Korean Journal of Crop Science. 64(4) : 406-413. https://doi.org/10.7740/KJCS.2019.64.4.406
  14. Major, D. J., D. R. Johnson, J. W. Tanner, and I. C. Anderson. 1975. Effects of daylength and temperature on soybean development. Crop Science. 15(2) : 174-179. https://doi.org/10.2135/cropsci1975.0011183X001500020009x
  15. Mandic, V., Z. Bijelic, V. Krnjaja, A. Simic, D. Ruzic-Muslic, V. Dragicevic, and V. Petricevic. 2017. The rainfall use efficiency and soybean grain yield under rainfed conditions in Vojvodina. Biotechnology in Animal Husbandry. 33(4) : 475-486. https://doi.org/10.2298/BAH1704475M
  16. Medic, J., C. Atkinson, and C. R. Hurburgh. 2014. Current knowledge in soybean composition. Journal of the American Oil Chemists Society. 91 : 363-384. https://doi.org/10.1007/s11746-013-2407-9
  17. Nico, M., D. J. Miralles, and A. G. Kantolic. 2015. Post-flowering photoperiod and radiation interaction in soybean yield determination: Direct and indirect photoperiodic effects. Field Crops Research. 176 : 45-55. https://doi.org/10.1016/j.fcr.2015.02.018
  18. Park, H. J., W. Y. Han, K. W. Oh, H. T. Kim, S. O. Shin, B. W. Lee, J. M. Ko, and I. Y. Baek. 2014. Growth and yield components responses to delayed planting of soybean in Southern region of Korea. Korean Journal of Crop Science. 59(4) : 483-491. https://doi.org/10.7740/KJCS.2014.59.4.483
  19. Schoving, C., C. O. Stockle, C. Colombet, L. Champolivier, P. Debaeke, and P. Maury. 2020. Combining simple phenotyping and photothermal algorithm for the prediction of soybean phenology: Application to a range of common cultivars grown in Europe. Frontiers in Plant Science. 10 : 1755.
  20. Sinegovskaya, V. and A. Levina. 2021. Formation of reproductive organs in an early-ripening soybean variety, depending on the daylight duration. In BIO Web of Conferences. EDP Sciences. 36 : 2005.
  21. Thuzar, M. 2010. The effects of temperature stress on the quality and yield of soybean [(Glycine max L.) Merrill.]. Journal of Agricultural Science. 2(1) : 172-179.
  22. Wang, C., X. Liu, X. Hao, Y. Pan, C. Zong, W. Zeng, W. Wang, G. Xing, J. He, and J. Gai. 2022. Evolutionary variation of accumulative day length and accumulative active temperature required for growth periods in global soybeans. Agronomy Journal. 12(4) : 962.
  23. Wei, J., X. Liu, L. Li, H. Zhao, S. Liu, X. Yu, Y. Shen, Y. Zhou, Y. Zhu, Y. Shu, and H. Ma. 2020. Quantitative proteomic, physiological and biochemical analysis of cotyledon, embryo, leaf and pod reveals the effects of high temperature and humidity stress on seed vigor formation in soybean. BMC Plant Biology. 20 : 1-15.