• Title/Summary/Keyword: 저항열

Search Result 1,197, Processing Time 0.029 seconds

Calculation of Horizontal Shear Strength in Reinforced Concrete Composite Beams (철근콘크리트 합성보의 수평전단강도 산정)

  • Kim, Min-Joong;Lee, Gi-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.772-781
    • /
    • 2020
  • A direct shear member resists external forces through the shear transfer of reinforcing bars placed at the concrete interface. The current concrete structural design code uses empirical formulas based on the shear friction analogy, which is applied to the horizontal shear of concrete composite beams. However, in the case of a member with a large amount of reinforcing bars, the shear strength obtained through the empirical formula is lower than the measured value. In this paper, the limit state of newly constructed composite beams on an existing concrete girder is defined using stress field theory, and material constitutive laws are applied to gain horizontal shear strength while considering the tension-stiffening and softening effects of concrete struts. A simplified method of calculating the shear strength is proposed, which was validated by comparing it with the related design code provisions. As a result, it was confirmed that the method generally shows a similar tendency to the experimental results when the shear reinforcing bar yields, unlike the regulations of the design code, where differences in the predicted value of shear strength occur according to the shear reinforcement ratio.

p-Type Activation of AlGaN-based UV-C Light-Emitting Diodes by Hydrogen Removal using Electrochemical Potentiostatic Activation (전기화학적 정전위 활성화를 사용한 수소 제거에 의한 AlGaN기반의 UV-C 발광 다이오드의 p-형 활성화)

  • Lee, Koh Eun;Choi, Rak Jun;Kumar, Chandra Mohan Manoj;Kang, Hyunwoong;Cho, Jaehee;Lee, June Key
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.85-89
    • /
    • 2021
  • AlGaN-based UV-C light-emitting diodes (LEDs) were applied for p-type activation by electrochemical potentiostatic activation (EPA). The p-type activation efficiency was increased by removing hydrogen atoms through EPA treatment using a neutral Mg-H complex that causes high resistance and low conductivity. A neutral Mg-H complex is decomposed into Mg- and H+ depending on the key parameters of solution, voltage, and time. The improved hole carrier concentration was confirmed by secondary ion mass spectroscopy (SIMS) analysis. This mechanism eventually improved the internal quantum efficiency (IQE), the light extraction efficiency, the leakage current value in the reverse current region, and junction temperature, resulting in better UV-C LED lifetime. For systematic analysis, SIMS, Etamax IQE system, integrating sphere, and current-voltage measurement system were used, and the results were compared with the existing N2-annealing method.

Capping Intercrystalline Defects of Polycrystalline UiO-66 Membranes by Polydimethylsiloxane Coating (폴리다이메틸실록산 코팅을 통한 다결정성 UiO-66 분리막의 비선택적 결정립계 결함 캡핑)

  • Ik Ji Kim;Hyuk Taek Kwon
    • Clean Technology
    • /
    • v.29 no.1
    • /
    • pp.71-75
    • /
    • 2023
  • In general, the presence of non-selective intercrystalline (grain boundary) defects in polycrystalline metal-organic framework (MOF) or zeolite membranes, which are known to be ca. 1 nm in size, causes lower membrane performance (selectivity) than the intrinsically expected. In this study we show that applying a thin polymeric coating of polydimethylsiloxane (PDMS) on a polycrystalline MOF membrane is effective to cap the non-selective intercrystalline defects and therefore improve membrane performance. To demonstrate the concept, first, polycrystalline UiO-66, one of Zr-based MOFs, membranes were prepared by an in-situ solvothermal growth. By controlling membrane growth condition with respect to growth temperature, we were able to obtain polycrystalline UiO-66 membranes at 150 ℃ with intercrystalline defects of which the quantity is not significant, so it can be plugged by the suggested PDMS deposition. Second, their performances were compared before and after the PDMS deposition. As expected, the PDMS deposition ended up with a noticeable increase in CO2/N2 ideal selectivity from 6 to 14, indicating successful intercrystalline defect plugging. However, the enhancement in CO2/N2 selectivity was accompanied by a significant reduction in CO2 permeance from 5700 to 33 GPU because the PDMS deposition not only plugs defects but also forms a continuous coating on membrane surface, adding an additional transport resistance.

MD Simulation of PLA-PEG Composites for Additive Manufacturing (적층 가공에서 적용 가능한 PLA-PEG 복합재료의 MD Simulation)

  • Songhee Ham;Youngjoon Jeon
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.285-290
    • /
    • 2023
  • Poly-lactic acid (PLA) is the most promising polymer in additive manufacturing as an alternative to acrylonitrile butadiene styrene (ABS). Since it is produced from renewable resources such as corn starch and sugar beets, it is also biocompatible and biodegradable. However, PLA has a couple of issues that limit its use. First, it has a comparatively low glass transition temperature of around 60 ℃, such that it exhibits low thermal resistance. Second, PLA has low impact strength because it is brittle. Due to these problems, scientists have found methods to improve the crystallinity and ductility of PLA. Polyethylene glycol (PEG) is one of the most studied plasticizers for PLA to give it chain mobility. However, the blend of PLA and PEG becomes unstable, and phase separation occurs even at room temperature as PEG is self-crystallized. Thus, it is necessary to investigate the optimal mixing ratio of PLA-PEG at the molecular scale. In this study, molecular dynamics will be conducted with various ratios of L-type PLA (PLLA) or DL-type PLA-PEG (PDLA-PEG) systems by using BIOVIA Materials Studio.

Battery Module Bonding Technology for Electric Vehicles (전기자동차 배터리 모듈 접합 기술 리뷰)

  • Junghwan Bang;Shin-Il Kim;Yun-Chan Kim;Dong-Yurl Yu;Dongjin Kim;Tae-Ik Lee;Min-Su Kim;Jiyong Park
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.33-42
    • /
    • 2023
  • Throughout all industries, eco-friendliness is being promoted worldwide with focus on suppressing the environmental impact. With recent international environment policies and regulations supported by government, the electric vehicles demand is expected to increase rapidly. Battery system itself perform an essential role in EVs technology that is arranged in cells, modules, and packs, and each of them are connected mechanically and electrically. A multifaceted approach is necessary for battery pack bonding technologies. In this paper, pros and cons of applicable bonding technologies, such as resistance welding, laser and ultrasonic bonding used in constructing electric vehicle battery packs were compared. Each bonding technique has different advantages and limitations. Therefore, several criteria must be considered when determining which bonding technology is suitable for a battery cell. In particular, the shape and production scale of battery cells are seen as important factors in selecting a bonding method. While dealing with the types and components of battery cells, package bonding technologies and general issues, we will review suitable bonding technologies and suggest future directions.

ViscoElastic Continuum Damage (VECD) Finite Element (FE) Analysis on Asphalt Pavements (아스팔트 콘크리트 포장의 선형 점탄성 유한요소해석)

  • Seo, Youngguk;Bak, Chul-Min;Kim, Y. Richard;Im, Jeong-Hyuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.809-817
    • /
    • 2008
  • This paper deals with the development of ViscoElastic Continuum Damage Finite Element Program (VECD-FEP++) and its verification with the results from both field and laboratory accelerated pavement tests. Damage characteristics of asphalt concrete mixture have been defined by Schapery's work potential theory, and uniaxial constant crosshead rate tests were carried out to be used for damage model implementation. VECD-FEP++ predictions were compared with strain responses (longitudinal and transverse strains) under moving wheel loads running at different constant speeds. To this end, an asphalt pavement section (A5) of Korea Expressway Corporation Test Road (KECTR) instrumented with strain gauges were loaded with a dump truck. Also, a series of accelerated pavement fatigue tests have been conducted at pavement sections surfaced with four asphalt concrete mixtures (Dense-graded, SBS, Terpolymer, CR-TB). Planar strain responses were in good agreement with field measurements at base layers, whereas strains at both surface and intermediate layers were found different from simulation results due to the complexity of tire-road contact pressures. Finally, fatigue characteristics of four asphalt mixtures were reasonably described with VECD-FEP++.

Utilization of Weather, Satellite and Drone Data to Detect Rice Blast Disease and Track its Propagation (벼 도열병 발생 탐지 및 확산 모니터링을 위한 기상자료, 위성영상, 드론영상의 공동 활용)

  • Jae-Hyun Ryu;Hoyong Ahn;Kyung-Do Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.245-257
    • /
    • 2023
  • The representative crop in the Republic of Korea, rice, is cultivated over extensive areas every year, which resulting in reduced resistance to pests and diseases. One of the major rice diseases, rice blast disease, can lead to a significant decrease in yields when it occurs on a large scale, necessitating early detection and effective control of rice blast disease. Drone-based crop monitoring techniques are valuable for detecting abnormal growth, but frequent image capture for potential rice blast disease occurrences can consume significant labor and resources. The purpose of this study is to early detect rice blast disease using remote sensing data, such as drone and satellite images, along with weather data. Satellite images was helpful in identifying rice cultivation fields. Effective detection of paddy fields was achieved by utilizing vegetation and water indices. Subsequently, air temperature, relative humidity, and number of rainy days were used to calculate the risk of rice blast disease occurrence. An increase in the risk of disease occurrence implies a higher likelihood of disease development, and drone measurements perform at this time. Spectral reflectance changes in the red and near-infrared wavelength regions were observed at the locations where rice blast disease occurred. Clusters with low vegetation index values were observed at locations where rice blast disease occurred, and the time series data for drone images allowed for tracking the spread of the disease from these points. Finally, drone images captured before harvesting was used to generate spatial information on the incidence of rice blast disease in each field.

Analyzing the Effects of the Initiation Sequences of the MDS Blasting Method on Rock Fracturing Using SPH-FEM Coupling Technique (SPH-FEM 연계기법을 이용한 MDS 발파법의 기폭패턴별 암석파괴 효과 분석)

  • Byung-Hee Choi;Young-Geun Kim;Ki-Chan Jeon;Se-Wook Oh
    • Explosives and Blasting
    • /
    • v.41 no.3
    • /
    • pp.13-25
    • /
    • 2023
  • The conventional bench blasting method uses the bottom initiation in all blast holes in a round, whereas the MDS (mixture detonation system) method applies the bottom and top initiations alternately according to the spatial position or temporal sequence of each blast hole. The former and latter are respectively called the SMDS (spatial MDS) and TMDS (temporal MDS) methods. Another variant called MMDS (modified MDS) is designed for the specific use in the site having a fly-rock problem. This study compares the MDS method to the conventional method in the aspect of rock fracturing effect. The comparison is made by numerical simulations for a two-row bench blasting model in the LS-DYNA. The SPH-FEM coupling method is utilized for constructing the blasting model. The SPH elements are used for the rock in the near-field region of the blast holes, and the FEM elements for that in the far-field region. The RHT material model is used for the rock. As a result of the simulations, it was found that up to 0.4 m deeper damaged zone was appeared in the SMDS method than in the conventional method for the case of the burden 1.6 m and bench height 3.0 m. In addition, the fly-rock velocity to the normal direction of the bench slope was appeared about 2.0 m/s lower in the MMDS method compared to the other methods.

A 1280-RGB $\times$ 800-Dot Driver based on 1:12 MUX for 16M-Color LTPS TFT-LCD Displays (16M-Color LTPS TFT-LCD 디스플레이 응용을 위한 1:12 MUX 기반의 1280-RGB $\times$ 800-Dot 드라이버)

  • Kim, Cha-Dong;Han, Jae-Yeol;Kim, Yong-Woo;Song, Nam-Jin;Ha, Min-Woo;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.1
    • /
    • pp.98-106
    • /
    • 2009
  • This work proposes a 1280-RGB $\times$ 800-Dot 70.78mW 0.l3um CMOS LCD driver IC (LDI) for high-performance 16M-color low temperature poly silicon (LTPS) thin film transistor liquid crystal display (TFT-LCD) systems such as ultra mobile PC (UMPC) and mobile applications simultaneously requiring high resolution, low power, and small size at high speed. The proposed LDI optimizes power consumption and chip area at high resolution based on a resistor-string based architecture. The single column driver employing a 1:12 MUX architecture drives 12 channels simultaneously to minimize chip area. The implemented class-AB amplifier achieves a rail-to-rail operation with high gain and low power while minimizing the effect of offset and output deviations for high definition. The supply- and temperature-insensitive current reference is implemented on chip with a small number of MOS transistors. A slew enhancement technique applicable to next-generation source drivers, not implemented on this prototype chip, is proposed to reduce power consumption further. The prototype LDI implemented in a 0.13um CMOS technology demonstrates a measured settling time of source driver amplifiers within 1.016us and 1.072us during high-to-low and low-to-high transitions, respectively. The output voltage of source drivers shows a maximum deviation of 11mV. The LDI with an active die area of $12,203um{\times}1500um$ consumes 70.78mW at 1.5V/5.5V.

Assessment of Ecosystem Productivity and Efficiency using Flux Measurement over Haenam Farmland Site in Korea (HFK) (플럭스 관측 기반의 생태계 생산성과 효율성 평가: 해남 농경지 연구 사례)

  • Indrawati, Yohana Maria;Kim, Joon;Kang, Minseok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.1
    • /
    • pp.57-72
    • /
    • 2018
  • Time series analysis of tower flux measurement can be used to build quantitative evidence for the achievement of climate-smart agriculture (CSA). In this study, we have assessed the first objective of CSA (regarding ecosystem productivity and efficiency) for rice paddy-dominated heterogeneous farmland. A set of quantitative indicators were evaluated by analysing the time series data of carbon, water and energy fluxes over the Haenam farmland site in Korea (HFK) during the rice growing seasons from 2003 to 2015. Four different varieties of rice were cultivated during the study period in chronological order of Dongjin No. 1 (2003-2008), Nampyung (2009), Onnuri (2010-2011), and Saenuri (2012-2015). Overall at HFK, gross primary productivity (GPP) ranged from 800 to $944g\;C\;m^{-2}$, water use efficiency (WUE) ranged from 1.91 to $2.80g\;C\;kg\;H_2O^{-1}$, carbon uptake efficiency (CUE) ranged from 1.06 to 1.34, and light use efficiency (LUE) ranged from 0.99 to $1.55g\;C\;MJ^{-1}$. Among the four rice varieties, Dongjin No. 1-dominated HFK showed the highest productivity with higher WUE and LUE, but comparable CUE. Considering the heterogeneous vegetation cover at HFK, a rule of thumb comparison suggested that the productivity of Dongjin No1-dominated HFK was comparable to those of monoculture rice paddies in Asia, whereas HFK was more efficient in water use and less efficient in carbon uptake. Saenuri-dominated HFK also produced high productivity but with the growing season length longer than Dongjin No.1. Although the latter showed better traits for CSA, farmers cultivate Saenuri because of higher pest resistance (associated with adaptability and resilience). This emphasizes the need for the evaluation of other two objectives of CSA (i.e. system resilience and greenhouse gas mitigation) for complete assessment at HFK, which is currently in progress.