• Title/Summary/Keyword: 저항열

Search Result 1,199, Processing Time 0.028 seconds

Thermal Resistance Characteristics and Fin-Layout Structure Optimization by Gate Contact Area of FinFET and GAAFET (FinFET 및 GAAFET의 게이트 접촉면적에 의한 열저항 특성과 Fin-Layout 구조 최적화)

  • Cho, Jaewoong;Kim, Taeyong;Choi, Jiwon;Cui, Ziyang;Xin, Dongxu;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.296-300
    • /
    • 2021
  • The performance of devices has been improved with fine processes from planar to three-dimensional transistors (e.g., FinFET, NWFET, and MBCFET). There are some problems such as a short channel effect or a self-heating effect occur due to the reduction of the gate-channel length by miniaturization. To solve these problems, we compare and analyze the electrical and thermal characteristics of FinFET and GAAFET devices that are currently used and expected to be further developed in the future. In addition, the optimal structure according to the Fin shape was investigated. GAAFET is a suitable device for use in a smaller scale process than the currently used, because it shows superior electrical and thermal resistance characteristics compared to FinFET. Since there are pros and cons in process difficulty and device characteristics depending on the channel formation structure of GAAFET, we expect a mass-production of fine processes over 5 nm through structural optimization is feasible.

Parametric Crack and Flexural Strength Analyses of Concrete Slab For Railway Structures Using GFRP Rebar (GFRP 보강근을 적용한 교량용 콘크리트 도상슬래브의 균열 및 휨강도 변수 해석)

  • Choe, Hyeong-Bae;Lee, Sang-Youl
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.363-370
    • /
    • 2021
  • In this paper, we presented an optimized crack and flexural strength analysis of a glass-fiber reinforced polymer (GFRP) rebar, used as reinforcements for in-site railway concrete slabs. The insulation performance of a GFRP rebar has the advantage of avoiding the loss of signal current in an audio frequency (AF) track circuit. A full-scale experiment, and three-dimensional finite element simulation results were compared to validate our approaches. Parametric numerical results revealed that the diameters and arrangements of the GFRP rebar had a significant effect on the flexural strength and crack control performances of the concrete track slabs. The results of this study could serve as a benchmark for future guidelines in designing more efficient, and economical concrete slabs using the GFRP rebar.

Absorption and Strength Properties of Landscape Paving Concrete According to Zeolite Coarse Aggregate Replacement Rate (제올라이트 굵은골재 대체율에 따른 조경포장 콘크리트의 흡수 및 강도 특성)

  • Na, Ok-Pin;Lee, Gi-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.131-139
    • /
    • 2021
  • This study assessed the use of zeolite with high absorption performance in landscape paving concrete as a substitute for aggregate. The absorption performance and strength properties of paving concrete were investigated according to the replacement rate of the zeolite coarse aggregate, and the mechanical properties were investigated through strength tests. The absorption rate of the zeolite aggregate was 14%, which is 2.5 times higher than that of general aggregate. When zeolite coarse aggregate is applied to paving concrete, the absorption rate increases according to the replacement rate. The absorption rate was 5.2% at a replacement rate of 50%, which was 42% higher than that of general paving concrete. The compressive strength increased to 20% of the replacement rate and decreased at a higher replacement, but all the strengths in the construction standard code were satisfied. The flexural strength satisfied the code up to a replacement rate of 10%, but the strength decreased with increasing replacement rate, and the splitting tensile strength was greater than that of paving concrete using general aggregate up to a 20% replacement rate. Overall, zeolite coarse aggregate can be applied as a substitute.

A Study on Bond Wire Fusing Analysis of GaN Amplifier and Selection of Current Capacity Considering Transient Current (GaN증폭기의 본드 와이어 용융단선 현상분석과 과도전류를 고려한 전류용량 선정에 대한 연구)

  • Woo-Sung, Yoo;Yeon-Su, Seok;Kyu-Hyeok, Hwang;Ki-Jun, Kim
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.537-544
    • /
    • 2022
  • This paper analyzes the occurrence and cause of bond wires fusing used in the manufacture of pulsed high power amplifiers. Recently GaN HEMT has been spotlight in the fields of electronic warfare, radar, base station and satellite communication. In order to produce the maximum output power, which is the main performance of the high-power amplifier, optimal impedance matching is required. And the material, diameter and number of bond wires must be determined in consideration of not only the rated current but also the heat generated by the transient current. In particular, it was confirmed that compound semiconductor with a wide energy band gap such as GaN trigger fusing of the bond wire due to an increase in thermal resistance when the design efficiency is low or the heat dissipation is insufficient. This data has been simulated for exothermic conditions, and it is expected to be used as a reference for applications using GaN devices as verified through IR microscope.

Development of Calculation Program for Thermophysical Properties of Synthetic Sand Mold (인공주물사의 열물성치 계산 프로그램 개발)

  • In-Sung Cho;Jeong-Ho Nam;K.D. Saveliyev;V.M. Golod;Hee-Soo Kim
    • Journal of Korea Foundry Society
    • /
    • v.43 no.4
    • /
    • pp.194-200
    • /
    • 2023
  • The heat transfer of the mold in the casting process has been calculated by considering the mold as a uniform isotropic material. Since the mold was not a uniform isotropic material, however, the calculation was performed with approximate values, and in particular, estimated values were used when considering compaction and the amount of added binder. In this study, a calculation algorithm of the thermal properties of the sand mold was developed. An algorithm for calculating the thermal conductivity and specific heat based on a thermal resistance model in the case of mono-dispersed sand grains was also developed and applied to sand molds with various size distributions. The thermal properties of sand were calculated for artificial sand, and relatively close values compared to the experimental values were obtained.

Enhancing Freeze-Thaw Resilience in Adhered Mortar Tile Modules (떠붙임 모르타르 타일 모듈의 동결융해 저항성 평가)

  • Pyeon, Su-Jeong;Kim, Gyu-Yong;Kim, Moon-Kyu;Choi, Byung-Cheol;Ji, Sung-Jun;Nam, Jeong-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.241-249
    • /
    • 2023
  • The objective of this research was to engineer a tile module that could efficiently curtail the incidence of tile defects during the construction phase. To assess the potential diminution in defect manifestation, we executed experiments centered on surface condition, the variation in mass before and after the freeze-thaw test, and adhesive strength. Our findings demonstrated that thermal contraction and expansion induced a relatively escalated frequency of defects in the underwater setting for the aluminum mesh, while the steel mesh saw a higher defect incidence in the air environment. Additionally, it was noted that the adhesive strength exhibited a trend towards augmentation as the mesh size dwindled. Collectively, these results suggest that the employment of smaller mesh sizes can foster improved adhesive strength, consequently diminishing tile defects. Further exploration and development of the tile module, informed by these insights, can substantially enhance the efficacy of the construction process.

Enhanced Oxidation Resistance of LSI-Cf/SiC Composite by De-siliconization (탈규소화를 통한 LSI-Cf/SiC 복합재료의 내산화성 향상)

  • Jung Hwan Song;Jung Hoon Kong;Seung Yong Lee;Young Il Son;Do Kyung Kim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.6
    • /
    • pp.21-27
    • /
    • 2022
  • Cf/SiC composites have low density, high mechanical strength, and good thermal stability, making them promising materials for high-temperature applications such as rocket propulsion and military fields. However, the remaining Si deteriorates physical and thermal properties. In this paper, the de-siliconization was introduced as a method to remove the Si of the Cf/SiC composite fabricated through Liquid Silicon Infiltration(LSI) process. The stability of composite has been tested under an oxyacetylene torch flame for up to 5 minutes. The oxidized surface and cross section of specimens were characterized by 3D scanning, X-ray diffraction(XRD), Optical microscope(OM) and Scanning electron microscope(SEM).

Temperature Distribution of Wet-Mixed High Strength Sprayed Polymer Mortar for Fire Resistance of Tunnel (터널 내화용 고강도 습식 스프레이 폴리머 모르타르의 화재 발생시 내부온도분포)

  • Won, Jong Pil;Choi, Seok Won;Park, Chan Gi;Park, Hae Kyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4C
    • /
    • pp.283-290
    • /
    • 2006
  • Concrete has advantages in fire situations as it is non-combustible and has low thermal conductivity. However, concrete that is not designed against fire can experience significant explosive spalling from the build-up of pore pressures and internal tensile stresses when heated. In this study, the performance of wet-mixed high strength sprayed polymer mortar for fire resistance of tunnel system was evaluated by experimentally and numerically. The fire test was performed in fire resistance(electric) furnace according to RABT(Richtlinien fur die Ausstatung und den Betrieb von $Stra{\beta}entunneln$) time heating temperature curve, so as to evaluate the temperature distribution with cover thickness of wet-mixed high strength sprayed polymer mortar for fire resistance of tunnel system. Based on experimental results and numerical analysis, the proper cover thickness of wet-mixed high strength sprayed polymer mortar determined the more than 4cm.

Development of Fluid Silicic Acid Coating with Paint Materials of the Steel Electric Power Facilities (강재 전력시설물을 위한 액상 규산질 도장제 개발에 대한 연구)

  • Kwon, Seung-Jun;Park, Sang-Sun;Lee, Sang-Min;Lee, Myung-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.57-64
    • /
    • 2008
  • Generally, organic paint on steel towers can guarantee durability in normal condition but occasionally shows its deterioration on the power line tower and electric power facilities, exposed to light(ultra violet) or heat. The objective of this study is to develope the inorganic paint material based on fluid silicic acid for steel electric power facilities. For the purpose, optimal mixture proportion is derived through 6 preliminary test and, additionally physical and durability performance test are carried out for selected specimens. The performances of developed organic paint material is similar to those of organic paint material. If resistance to chemical attack is improved, the developed inorganic paint is evaluated to replace the organic paint and obtain wide application.

Analysis of Prestress Effect and Reliability of PSSC Composite Girder Bridge (PSSC 합성거더 교량의 프리스트레스 효과 및 신뢰도 해석)

  • Hwang, Chul-Sung;Paik, In-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.214-224
    • /
    • 2008
  • Member force, strain and stress distribution of a section are obtained for optimized standard 25m~45m PSSC composite bridge subjected to dead and live load in order to interpret the effect of prestressing and deformation of tendon. The stress and strain distribution and moment capacity are obtained for both noncomposite and composite section and for allowable stress limit state, yield limit state and strength limit state. Reliability analysis is conducted after assuming limit states for stress and flexural strength. The reliability index for standard PSSC composite bridge which is designed to satisfy the allowable stress for flexural strength are higher than 3.5 which is required reliability indexes on American code for LRFD. Reliability of PSSC girder which is designed based on allowable stress of bridge design code is high for flexural strength.