• Title/Summary/Keyword: 저콘

Search Result 14, Processing Time 0.028 seconds

SHRIMP U-Pb Zircon Ages of the Gusandong (Kusandong) Tuff in the Cretaceous Gyeongsang Basin (백악기 경상분지 구산동응회암의 SHRIMP 저콘 연대)

  • Kim, Jong-Sun;Cho, Hyeongseong;Kim, Hong-Gyun;Son, Moon
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.235-249
    • /
    • 2013
  • The Gusandong Tuff (Kusandong Tuff), known as a very significant key bed in the Cretaceous Gyeongsang Basin, is divided into (1) Northern Gusandong Tuff (NKT), (2) Southern Gusandong Tuff (SKT), and (3) Sinsudo Tuff, which were derived from different vents. In order to suggest their more accurate eruption times and to contribute to establishing stratigraphy of the basin, SHRIMP U-Pb zircon ages were determined from the three tuffs. As a result, the virtually same ages of $103.0{\pm}1.2$ Ma and $104.1{\pm}1.3$ Ma were obtained from NKT and SKT, respectively, which mean that they simultaneously erupted during 103~104 Ma. The zircon ages obtained from the Sinsudo Tuff are however divided into two groups i.e. $103.4{\pm}2.1$ and $95.79{\pm}0.98$ Ma. Based on distinctive morphology and cathodoluminescence image of the younger zircons, the younger age, $95.79{\pm}0.98$ Ma, is much more reasonable as the eruption time of the Sinsudo Tuff.

Relative Magma Formation Temperatures of the Phanerozoic Granitoids in South Korea Estimated by Zircon Saturated Temperature (저콘 포화온도로 추정한 남한 현생이언 화강암의 상대적인 마그마 생성온도)

  • Sangong Hee;Kwon Sung-Tack;Cho Deung-Ryong;Jwa Yong-Joo
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.2 s.40
    • /
    • pp.83-92
    • /
    • 2005
  • It has recently been proposed that granites can be divided into hot and cold ones by absence and presence of inherited zircon, respectively, which is closely related to zircon saturation temperature. The Phanerozoic granites in South Korea are divided into high- and low-Zr groups in a $SiO_2-Zr$ diagram, which appears to be related to their intrusive age. Most Triassic-Jurassic granites belong to low-Zr group, whereas most Cretaceous-Early Tertiary granites belong to the high-Zr group with the exception of geographically distinct Masan and Jinhae granites that belong low-Zr group. Calculated zircon saturation temperatures using major elements and Zr contents indicate that the Cretaceous-Early Tertiary granites $(608-834^{\circ}C,\;average\; 782\pm31^{\circ}C)$ except for the Masan and Jinhae granites $(average\;759\pm16^{\circ}C)$ show higher temperature than the Triassic-Jurassic granites $(642-824^{\circ}C,\;average\;756\pm31^{\circ}C)$. U-Pb zircon isotope data of the Triassic-Jurassic granites reported so far define discordia in a concordia diagram, which indicates presence of inherited zircon and agrees with their low zircon saturation temperatures. So the Triassic-Jurassic granites appear to belong to cold granite. On the other hand, presence or absence of inherited zircon has not been known for the Cretaceous-Early Tertiary granites with relatively high zircon saturation temperature, so that their classification into hot or cold granite awaits further study. Nevertheless, the Creatceous-Early Tertiary granites may have formed at higher temperature than the Triassic-Jurassic granites, since zircon saturation temperature reflects formation temperature of magma to a certain degree.

LA-ICP-MS U-Pb Zircon Age of the Hongjesa Granite in the Northeast Yeongnam Massif (영남육괴 북동부 홍제사 화강암의 LA-ICP-MS U-Pb 저콘 연대)

  • Lee, Ho-Sun;Park, Kye-Hun;Song, Yong-Sun;Kim, Nam-Hoon;Yuji, Orihashi
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.103-108
    • /
    • 2010
  • U-Pb zircon age for the Hongjesa granite, in the northeast Yeongnam massif, was determined using LA-ICP-MS. We obtained upper intercept age of $2013^{+30}/_{-24}(2{\sigma})$ Ma, indicating Paleoproterozoic granitic magmatism together with the Buncheon and Pyeonghae granite gneisses of the region.

LA-ICP-MS U-Pb Zircon Age of the Granite Gneiss from Jeungsan-Pyeongwon Area of North Korea (북한 증산-평원지역 화강편마암의 LA-ICP-MS U-Pb 저콘 연대)

  • Song, Yong-Sun;Park, Kye-Hun;Lee, Ho-Sun;Lin, Cao;Yuji, Orihashi
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.171-179
    • /
    • 2009
  • LA-ICP-MS U-Pb zircon age was determined from the granite gneiss from Jeungsan-Pyeongwon area located to the west of Pyeongan Basin, North Korea, yielding concordant age of $1,873{\pm}19(2{\sigma})$Ma interpreted as Paleoproterozoic granitic magmatism. Considering relatively precise data reported recently using SHRIMP and LA-ICP-MS, ages around 1,870 Ma have been most frequently reported from Precambrian basement rocks of Korean peninsula, including Yeongnam, Gyeonggi, and Nangnim massifs altogether. Geologic events of this period are interpreted as not only granitic magmatism but also hightemperature regional metamorphism depending on their localities. The magmatic and regional metamorphic events of similar periods have also been reported from neighboring cratons of both North China and South China. Therefore, we need more data and efforts to decipher correlation between Precambrian basements between Korea and China.

Heavy Mineral Analysis of the Cretaceous Hayang Group Sandstones, Northeastern Gyeongsang Basin (경상분지 북동부 백악기 하양층군 사암의 중광물분석)

  • 이용태;신영식;김상욱;이윤종;고인석
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.14-23
    • /
    • 1999
  • The northeastern part of the Gyeongsang Basin is widely covered by the Cretaceous Hayang Group (Aptian to Albian). The Hayang Group consists of the IIjig. Hupyeongdong, Jeomgog, and Sagog formations. Heavy mineral analysis was carried out to define the possible source rocks of the Haynag Group snadstones. Heavy minerals separated from IIjig, Hupyeongdong, and Jeomgog sandstones are hematite, ilmenite, leucoxene, magnetite, pyrite, actinolite, andalusite, apatite, biotite, chlorite, epidote, garnet, hornblende, kyanite, monazite, muscovite, rutile, sphene, spinel, staurolite, tourmaline, and zircon. Based on their close association and sensitiveness, the heavy mineral assemblages can be classified into 6 syutes: 1)apatite-green tourmaline-sphene-colorless/yellowish zircon; 2) colorless garnet-epidote-rutile-brown tourmaline; 3) rounded purple zircon-rounded tourmaline-rounded rutile; 4) augite-hornblende-color- less zircon; 5) epidote-garnet-sphene; and 6) blue tourmaline. The possible source rocks corresponding to each assemblage are 1) granitic rocks; 2) metamorphic rocks (schist and gneiss) ; 3) older sedimentary rocks; 4) andesitic rocks; 5) metamorphosed impure limestone; and 6) pegmatite, respectively. Previous paleocurrent data suggest that the sediments of the study area were mainly derived from the northeastern to southeastern directions. Thus, the most possible source areas would be the east extension part of the sobaegsan metamorphic complex to the northeast and the Cheongsong Ridge to the southeast.

  • PDF

Revised Fission-track Ages and Chronostratigraphies of the Miocene Basin-fill Volcanics and Basements, SE Korea (한국 동남부 마이오세 분지 화산암과 기반암의 피션트랙 연대 재검토와 연대층서 고찰)

  • Shin, Seong-Cheon
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.83-115
    • /
    • 2013
  • Erroneous fission-track (FT) ages caused by an inappropriate calibration in the initial stage of FT dating were redefined by re-experiments and zeta calibration using duplicate samples. Revised FT zircon ages newly define the formation ages of Yucheon Group rhyolitic-dacitic tuffs as Late Cretaceous to Early Paleocene ($78{\pm}4$ Ma to $65{\pm}2$ Ma) and Gokgangdong rhyolitic tuff as Early Eocene ($52.1{\pm}2.3$ Ma). In case of the Early Miocene volcanics, FT zircon ages from a dacitic tuff of the upper Hyodongri Volcanics ($21.6{\pm}1.4$ Ma) and a dacitic lava of the uppermost Beomgokri Volcanics ($21.3{\pm}2.0$ Ma) define chronostratigraphies of the upper Beomgokri Group, respectively in the southern Eoil Basin and in the Waeup Basin. A FT zircon age ($19.8{\pm}1.6$ Ma) from the Geumori dacitic tuff defines the time of later dacitic eruption in the Janggi Basin. Based on FT zircon ages for dacitic rocks and previous age data (mostly K-Ar whole-rock, partly Ar-Ar) for basaltic-andesitic rocks, reference ages are recommended as guides for stratigraphic correlations of the Miocene volcanics and basements in SE Korea. The times of accumulation of basin-fill sediments are also deduced from ages of related volcanics. Recommended reference ages are well matched to the whole stratigraphic sequences despite complicated basin structures and a relative short time-span. The Beomgokri Group evidently predates the Janggi Group in the Eoil-Waeup basins, while it is placed at an overlapped time-level along with the earlier Janggi Group in the Janggi Basin. Therefore, the two groups cannot be uniformly defined in a sequential order. The Janggi Group of the Janggi Basin can be evidently subdivided by ca. 20 Ma-basis into two parts, i.e., the earlier (23-20 Ma) andesitic-dacitic and later (20-18 Ma) basaltic strata.

The Age of the Okcheon Metamorphic Belt-How Much Do We Know? (옥천 변성대의 시기-우리는 얼마만큼 알고 있나?)

  • Kwon, Sung-Tack
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.51-56
    • /
    • 2008
  • The geologic age of the Okcheon metamorphic belt, used to be a longstanding puzzle, has been settled down to Neoproterozoic to Paleozoic with discovery of fossils and isotopic age dating of metavolcanic rocks. As isotopic ages become accumulated, there appeared a controversy over the age of peak metamorphism in the Okcheon metamorphic belt, i.e., a single late Permian-early Triassic metamorphism (CHIME allanite age and U-Pb age of metamorphic zircon), or earlier independent presence of early Permian metamorphism (U-Pb age of allanite within garnet porphyroblast). If we compare the isotopic ages that can represent metamorphism, the data for the latter have much larger error than those of the former with some overlap considering the error limits. It means that, the former, supported by two independent ages, is considered a better representation for the age of metamorphism of the Okcheon metamorphic belt. Therefore, I propose the idea of early Permian metamorphism should better be reserved until conclusive evidence appears. The late Permian-early Triassic metamorphic age suggest that the effect of continental collision influenced much of the middle part of Korean Peninsula, namely, the Imjingang belt, the Gyeonggi massif and the Okcheon belt.