• Title/Summary/Keyword: 저전력 기술 매핑

Search Result 15, Processing Time 0.019 seconds

A CLB based CPLD Low-power Technology Mapping Algorithm consider Area and Delay time (면적과 지연 시간을 고려한 CLB 구조의 CPLD 저전력 기술 매핑 알고리즘)

  • 김재진;조남경;전종식;김희석
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1169-1172
    • /
    • 2003
  • In this paper, a CLB-based CPLD low-power technology mapping algorithm consider area and delay time is proposed. To perform low power technology mapping for CPLD, a given Boolean network have to be represented to DAG. The proposed algorithm are consist of three step. In the first step, TD(Transition Density) calculation have to be performed. In the second step, the feasible clusters are generated by considering the following conditions: the number of output, the number of input and the number of OR-terms for CLB(Common Logic Block) within a CPLD. The common node cluster merging method, the node separation method, and the node duplication method are used to produce the feasible clusters. In the final step, low power technology mapping based on the CLBs is packing the feasible clusters into the several proper CLBs. The proposed algorithm is examined by using benchmarks in SIS. In the case of that the number of OR-terms is 5, the experiments results show that reduce the power consumption by 30.73% comparing with that of TEMPLA, and 17.11% comparing with that of PLAmap respectively.

  • PDF

Memory Reduction Method of Radix-22 MDF IFFT for OFDM Communication Systems (OFDM 통신시스템을 위한 radix-22 MDF IFFT의 메모리 감소 기법)

  • Cho, Kyung-Ju
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.1
    • /
    • pp.42-47
    • /
    • 2020
  • In OFDM-based very high-speed communication systems, FFT/IFFT processor should have several properties of low-area and low-power consumption as well as high throughput and low processing latency. Thus, radix-2k MDF (multipath delay feedback) architectures by adopting pipeline and parallel processing are suitable. In MDF architecture, the feedback memory which increases in proportion to the input signal word-length has a large area and power consumption. This paper presents a feedback memory size reduction method of radix-22 MDF IFFT processor for OFDM applications. The proposed method focuses on reducing the feedback memory size in the first two stages of MDF architectures since the first two stages occupy about 75% of the total feedback memory. In OFDM transmissions, IFFT input signals are composed of modulated data and pilot, null signals. In order to reduce the IFFT input word-length, the integer mapping which generates mapped data composed of two signed integer corresponding to modulated data and pilot/null signals is proposed. By simulation, it is shown that the proposed method has achieved a feedback memory reduction up to 39% compared to conventional approach.

Voltage-Frequency-Island Aware Energy Optimization Methodology for Network-on-Chip Design (전압-주파수-구역을 고려한 에너지 최적화 네트워크-온-칩 설계 방법론)

  • Kim, Woo-Joong;Kwon, Soon-Tae;Shin, Dong-Kun;Han, Tae-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.8
    • /
    • pp.22-30
    • /
    • 2009
  • Due to high levels of integration and complexity, the Network-on-Chip (NoC) approach has emerged as a new design paradigm to overcome on-chip communication issues and data bandwidth limits in conventional SoC(System-on-Chip) design. In particular, exponentially growing of energy consumption caused by high frequency, synchronization and distributing a single global clock signal throughout the chip have become major design bottlenecks. To deal with these issues, a globally asynchronous, locally synchronous (GALS) design combined with low power techniques is considered. Such a design style fits nicely with the concept of voltage-frequency-islands (VFI) which has been recently introduced for achieving fine-grain system-level power management. In this paper, we propose an efficient design methodology that minimizes energy consumption by VFI partitioning on an NoC architecture as well as assigning supply and threshold voltage levels to each VFI. The proposed algorithm which find VFI and appropriate core (or processing element) supply voltage consists of traffic-aware core graph partitioning, communication contention delay-aware tile mapping, power variation-aware core dynamic voltage scaling (DVS), power efficient VFI merging and voltage update on the VFIs Simulation results show that average 10.3% improvement in energy consumption compared to other existing works.

CLB-Based CPLD Technology Mapping Algorithm for Power Minimization under Time Constraint (시간 제약 조건 하에서 저전력을 고려한 CLB구조의 CPLD 기술 매핑 알고리즘)

  • Kim, Jae-Jin;Kim, Hui-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.8
    • /
    • pp.84-91
    • /
    • 2002
  • In this paper, we proposed a CLB-based CPLD technology mapping algorithm for power minimization under time constraint in combinational circuit. The main idea of our algorithm is to exploit the "cut enumeration and feasible cluster" technique to generate possible mapping solutions for the sub-circuit rooted at each node. In our technology mapping algorithm conducted a low power by calculating TD and EP of each node and decomposing them on the circuit composed of DAG. It also takes the number of input, output, and OR-term into account on condition that mapping can be done up to the base of CLB, and so it generates the feasible clusters to meet the condition of time constraint. Of the feasible clusters, we should first be mapping the one that h3s the least output for technology mapping of power minimization and choose to map the other to meet the condition of time constraint afterwards. To demonstrate the efficiency of our approach, we applied our algorithm to MCNC benchmarks and compared the results with those of the exiting algorithms. The experimental results show that our approach is shown a decrease of 46.79% compared with DDMAP and that of 24.38% for TEMPLA in the power consumption.

Novel Radix-26 DF IFFT Processor with Low Computational Complexity (연산복잡도가 적은 radix-26 FFT 프로세서)

  • Cho, Kyung-Ju
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.1
    • /
    • pp.35-41
    • /
    • 2020
  • Fast Fourier transform (FFT) processors have been widely used in various application such as communications, image, and biomedical signal processing. Especially, high-performance and low-power FFT processing is indispensable in OFDM-based communication systems. This paper presents a novel radix-26 FFT algorithm with low computational complexity and high hardware efficiency. Applying a 7-dimensional index mapping, the twiddle factor is decomposed and then radix-26 FFT algorithm is derived. The proposed algorithm has a simple twiddle factor sequence and a small number of complex multiplications, which can reduce the memory size for storing the twiddle factor. When the coefficient of twiddle factor is small, complex constant multipliers can be used efficiently instead of complex multipliers. Complex constant multipliers can be designed more efficiently using canonic signed digit (CSD) and common subexpression elimination (CSE) algorithm. An efficient complex constant multiplier design method for the twiddle factor multiplication used in the proposed radix-26 algorithm is proposed applying CSD and CSE algorithm. To evaluate performance of the previous and the proposed methods, 256-point single-path delay feedback (SDF) FFT is designed and synthesized into FPGA. The proposed algorithm uses about 10% less hardware than the previous algorithm.