• Title/Summary/Keyword: 저마늄

Search Result 5, Processing Time 0.021 seconds

Tin Germanium Sulfide Nanoparticles for Enhanced Performance Lithium Secondary Batteries (고성능 리튬 이차 전지를 위한 황화 주석 저마늄 (SnxGe1-xS) 나노입자 연구)

  • Cha, E.H.;Kim, Y.W.;Lim, S.A.;Lim, J.W.
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.1
    • /
    • pp.31-37
    • /
    • 2015
  • Composition-controlled ternary components chalcogenides germanium tin sulfide ($Sn_xGe_{1-x}S$) nanoparticles were synthesized by a novel gas-phase laser photolysis reaction of tetramethyl germanium, tetramethyl tin, and hydrogen sulfide mixture. Subsequent thermal annealing of as-grown amorphous nanoparticles produced the crystalline orthorhombic phase nanoparticles. All these composition-tuned nanoparticles showed excellent cycling performance of the lithium ion battery. The germanium sulfide nanoparticles exhibit a maximum capacity of 1200 mAh/g after 70 cycles. As the tin composition (x) increases, the capacity maintains better at the higher discharge/charge rate. This novel synthesis method of tin germanium sulfide nanoparticles is expected to contribute to expand their applications in high-performance energy conversion systems.

Properties of CoGe thin film-based galvanic cells and their applications for IoT sensor networks (CoGe 박막 기반 galvanic cell의 특성 및 IoT 센서 네트워크에 대한 적용)

  • Jeon, Buil;Han, Dongsoo;Yoon, Giwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.9
    • /
    • pp.1347-1356
    • /
    • 2022
  • In this paper, we investigate the properties of CoGe thin film-based galvanic cells as a function of their dimension (cell length, width, etc.) and show their application as sensors to Arduino-based IoT sensor networks to detect water contact. Because these CoGe thin film-based galvanic cells do not require mechanical strains or temperature gradients unlike piezoelectric and thermoelectric energy harvesters, we think that these thin film-based galvanic cells are more suitable for self-powered sensor networks demanding sustainable and robust energy harvesters. In the past, a sputter-deposited CoGe thin film has not been intensively investigated for energy harvesting appilcations. Thus, in this study, we perform a feasibility study of galvanic cells composed of a sputter-deposited CoGe thin film to see if they can be applied as potential self-powered sensors. We believe that this paper will be of great help in developing even more enhanced sensor networks.

Growth mechanism and controlled synthesis of single-crystal monolayer graphene on Germanium(110)

  • Sim, Ji-Ni;Kim, Yu-Seok;Lee, Geon-Hui;Song, U-Seok;Kim, Ji-Seon;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.368-368
    • /
    • 2016
  • 그래핀(Graphene)은 탄소 원자가 6각 구조로 이루진 2차원 알려진 물질 중 가장 얇은(0.34 nm) 두께의 물질이며 그 밴드구로조 인해 우수한 전자 이동도($200000cmV^{-1}s^{-1}$)를 가지고 있며, 이외에도 기계적, 화학적으로 뛰어난 특성을 가진다. 대면적화 된 그래핀을 성장시키기 위한 방법으로는 화학적 기상 증착법(Chemical Vapor Deposition)이 있다. 하지만 실제 여러 전이금속에서 합성되는 그래핀은 다결정으로, 서로 다른 면 방향을 가진 계면에서 전자의 산란이 일어나며, 고유의 우수한 특성이 저하되게 된다. 따라서 전자소재로 사용되기 위해서는 단결정의 대면적화 된 그래핀에 대한 연구가 지속적으로 이루어지고 있다. 앞서의 두 문제점 중, 단결정의 그래핀 합성에 크게 영향을 미치는 요인으로는 크게 합성 온도, 촉매 기판의 탄소 용해도, 촉매 표면에서의 탄소 원자의 확산성이 있다. 본 연구에서는 구리, 니켈, 실리콘에 비해 탄소 용해도가 낮으며, 탄소 원자의 높은 확산성으로 인해 단결정의 단층 그래핀을 합성에 적합하다고 보고된 저마늄(Germanium) 기판을 사용하여 그래핀을 합성하였다. 단결정의 그래핀을 성장시키기 위해 메탄(Methane; $CH_4$)가스의 주입량과 수소 가스의 주입량을 제어하여 성장 속도를 조절 하였으며, 성장하는 그래핀의 면방향을 제어하고자 하였다. 표면의 산화층(Oxidized layer)을 제거하기 위하여 불산(Hydrofluoric acid)를 사용하였다. 불산 처리 후 표면의 변화는 원자간력현미경(Atomic force microscopipe)을 통하여 분석하였다. 합성된 그래핀의 특성을 저 에너지 전자현미경(Low energy electron microscopy), 광전자 현미경(Photo emission electron microscopy), 라만 분광법(Raman spectroscopy), 원자간력현미경(Atomic force microscopy)와 투과전자현미경 (transmission electron microscopy)을 이용하여 기판 표면의 구조와 결정성을 분석하였다.

  • PDF

High-Yield Gas-Phase Laser Photolysis Synthesis of Germanium Nanocrystals for High-Performance Lithium Ion Batteries (고성능 리튬이온 전지를 위한 저마늄 나노입자의 가스상 레이저 광분해 대량 합성법 개발)

  • Kim, Cang-Hyun;Im, Hyung-Soon;Cho, Yong-Jae;Chung, Chan-Su;Jang, Dong-Myung;Myung, Yoon;Kim, Han-Sung;Back, Seung-Hyuk;Im, Young-Rok;Park, Jeung-Hee;Song, Min-Seob;Cho, Won-Il;Cha, Eun-Hee
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.3
    • /
    • pp.181-189
    • /
    • 2012
  • We developed a new high-yield synthesis method of free-standing germanium nanocrystals (Ge NCs) by means of the gas-phase photolysis of tetramethyl germanium in a closed reactor using an Nd-YAG pulsed laser. Size control (5-100 nm) can be simply achieved using a quenching gas. The $Ge_{1-x}Si_x$ NCs were synthesized by the photolysis of a tetramethyl silicon gas mixture and their composition was controlled by the partial pressure of precursors. The as-grown NCs are sheathed with thin (1-2 nm) carbon layers, and well dispersed to form a stable colloidal solution. Both Ge NC and Ge-RGO hybrids exhibit excellent cycling performance and high capacity of the lithium ion battery (800 and 1100 mAh/g after 50 cycles, respectively) as promising anode materials for the development of high-performance lithium batteries. This novel synthesis method of Ge NCs is expected to contribute to expand their applications in high-performance energy conversion systems.

A Study on the Validation of Effective Angle of Particle Deposition according to the Detection Efficiency of High-purity Germanium Gamma-ray Detector (고순도 저마늄 감마선 검출기의 검출효율에 따른 유효입체각 검증에 관한 연구)

  • Chang, Boseok
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.4
    • /
    • pp.487-494
    • /
    • 2020
  • The distance between the source and the detector, the diameter of the detector, and the volume effect of the radiation source result in a change in solid angle at the detector entrance, which affects the determination of detection efficiency by causing a difference in path length within the detector. A typical analysis method for calculating solid angles was useful only for a source (60Co) with a simple geometric structure, so in this experiment, the distance between the detector and the source was measured by switching on for up to 25 cm with the reference point of window cap 0.5 cm. In addition, 450 and 1000 ㎖ Marinelli beaker of standard volumetric sources were closely adhered to the detector. For circular point sources co-axial with the detector, the change in the solid angle to the distance from the detector window is equal to half the square radius of the source versus the square radius of the detector, if the resulting relationship of the calculation analysis results in the detector being less than the radius of the source. Since the solid angular difference is 0.5 the result of Monte Carlo is acceptable. The relationship between detector and source distance is shown. Solid angles have been verified to decrease rapidly with distance. Measurement and simulation results for a volumetric source show a difference of ±1.01% from a distance of 0 cm and less than 4 % when the distance is reduced to 5 and 10 cm. It can be seen that the longer distance, the smaller efficiency angle, and the exponential increase in attenuation as the energy decreases, is reflected in the calculation of efficiency. Thus, the detection efficiency has proved sufficient for the use of solid angle and Monte Carlo codes.