• Title/Summary/Keyword: 저레이놀즈수 에어포일

Search Result 10, Processing Time 0.027 seconds

A Study on Aerodynamic Characteristics of Airfoil for Human Powered Aircraft (인간동력 항공기용 에어포일의 공력특성 연구)

  • Park, Jun-Yong;Im, Je-Yeon;Yeo, Seong-Yun;Yu, Gi-Wan
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.331-336
    • /
    • 2013
  • 본 연구에서는 인간동력 항공기의 주익에 적용할 에어포일 형상에 대한 공력 특성을 파악하였다. 인간동력 항공기 날개에 적용하기에 적절한 에어포일을 조사하였으며, DAE11, DAE21, DAE31, SG6043 익형에 대하여 전산유체해석 프로그램인 EDISON_CFD를 통하여 비교하였다. 인간동력 항공기의 낮은 비행속도를 감안하여 $6{\times}10^5$의 저 레이놀즈수에서 받음각에 따른 양력계수, 항력계수, 양항비 등을 얻어내어 상호 비교 분석하였다. 본 연구를 통해 인간동력 항공기 주익에 적용할 저 레이놀즈 에어포일 형상을 최종적으로 선택할 수 있는 근거 자료를 확보하였다.

  • PDF

Measurement of an Unsteady Boundary Layer of an Oscillating Airfoil at a Low Reynolds Number (저 레이놀즈수에서 진동하는 에어포일의 비정상 경계층 측정)

  • Kim, Dong-Ha;Jang, Jo-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.12
    • /
    • pp.9-17
    • /
    • 2006
  • An experimental study was carried out to examine the behavior of the unsteady boundary layer. An NACA 0012 airfoil with aspect ratio of 2.7 was set vertically in a test section, which is sinusoidally pitched about the quarter chord. The oscillating amplitude is from -6$^{\circ}$ to +6$^{\circ}$ and the mean angle of attack is 0$^{\circ}$. Surface mounted probes (Glue-on probes) were employed to measure the surface flow of the boundary layer. Measurements were made at free-stream velocities of 1.98, 2.83, and 4.03m/s, and the corresponding Reynolds numbers based on the chord length were 2.3$\times$104, 3.3$\times$104 and 4.8$\times$104, respectively. The reduced frequency is fixed as 0.1 in all cases. The results show that the surface position of minimum shear stress and of boundary layer break-down can be discerned in the Reynolds number between 2.3$\times$104 and 3.3$\times$104.

A STUDY ON THE LOW REYNOLDS NUMBER AIRFOILS FOR THE DESIGN OF THREE DIMENSIONAL WING (3차원 날개 설계를 위한 저레이놀즈수 에어포일에 대한 연구)

  • Jung, K.J.;Lee, J.;Kwon, J.H.;Kang, I.M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.90-96
    • /
    • 2009
  • In this study, a generic airfoil designed by the inverse method was evaluated with several candidate airfoils as a first step. Each airfoil was compared with respect to aerodynamic performance to meet the requirement of HALE(high altitude long endurance) aircraft. The second step was to optimize the candidate airfoil using the couple of optimization formulations to down select an optimum airfoil. For the analysis of low Reynolds number 2D flow, Drela's MSES was used. After comparing the aerodynamic results, the best airfoil was chosen to construct the baseline 3D wing. The Navier-Stokes code was used to evaluate the overall aerodynamic performance of designed wing with other wings. The results show that the designed wing has the best performance compared with other wings.

  • PDF

Flow Visualization of an Unsteady Airfoil at Low Reynolds Numbers (저 레이놀즈수에서 비정상 에어포일의 흐름 가시화)

  • Kim, Dong-Ha;Chang, Jo-Won
    • Journal of the Korean Society of Visualization
    • /
    • v.4 no.2
    • /
    • pp.51-58
    • /
    • 2006
  • A boundary layer visualization was carried out in order to investigate the influence of Reynolds number on an oscillating airfoil. An NACA 0012 airfoil is sinusoidally pitched at the quarter chord point with oscillation amplitude of ${\pm}6^{\circ}$. A smoke-wire technique was employed to visualize the boundary layer and the near-wake. The freestream velocities are 1.98, 2.83 and 4.03m/s and corresponding chord Reynolds numbers are $2.3{\times}10^4,\;3.3{\times}10^4$, and $4.8{\times}10^4$, respectively. As the reduced frequency of K=0.1 is fixed, the corresponding frequency of an airfoil was adjusted in each case. The results reveal that the point at which the shear stress in an unsteady boundary layer separation disappears does not correspond with the position of the breakdown of the boundary layer, and that the breakdown of the boundary layer occurs further downstream.

  • PDF

A Study on Boundary Layer Behavior of an NACA 0012 Airfoil (NACA 0012 에어포일의 경계층 거동에 관한 연구)

  • 양재훈;장조원
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.10
    • /
    • pp.16-23
    • /
    • 2006
  • A study on the boundary layer behavior of an NACA 0012 airfoil at low Reynolds numbers was investigated in order to gain knowledge of a boundary layer that might be employed in a turbine blade and MAVs. A hot-wire anemometer was used to measure the boundary layer of an NACA 0012 airfoil at static angles of attack ${\alpha}$=$0^{\circ}$, $3^{\circ}$, and $6^{\circ}$, and Reynolds Numbers Re=$2.3{\times}10^4$, $3.3{\times}10^4$, and $4.8{\times}10^4$. The results of this study show that the laminar boundary layer on the airfoil surface is attached to the surface at ${\alpha}$=$0^{\circ}$, and the laminar separation of the boundary layer on the airfoil surface occurs at ${\alpha}$=$3^{\circ}$. Furthermore, the reattachment of the boundary layer in the present study occurs for the cases of Re=$3.3{\times}10^4$ and Re=$4.8{\times}10^4$at ${\alpha}$=$6^{\circ}$.

A Study on Wall Interference Effect Around the Wind Turbine Airfoil (풍력터빈 에어포일 주위의 벽면효과에 관한 연구)

  • Cho, Hwan-Kee;Kang, Seung-Hee;Ryu, Ki-Wahn;Lee, Jun-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.6
    • /
    • pp.485-491
    • /
    • 2012
  • The wall interference effects around the wind-turbine airfoil are experimentally investigated at low Reynolds numbers in a closed test-section wind tunnel. The test is performed at free-stream velocities from 10 to 31 m/s, which correspond to Reynolds numbers ranging from $1.5{\times}10^5$ to $4.6{\times}10^5$ based on chord of the airfoil. The blockage-area ratios, which is the ratio of the chord to the test-section width, are 27.8%, 38.5%, 41.7%, 45.5%, and 55.6%. The test results for the airfoil show that the transition point on the airfoil surface tends to move backward due to wall interference. The wall pressures for an adequate interference correction by a measured-boundary-condition method are desirable more than three times region of the chord before and after around the reference center.

Visualization Study on the Boundary Layer and Near-Wake of a Stationary Airfoil at Low Reynolds Numbers (저 레이놀즈수에서 정지된 에어포일의 경계층 및 근접 후류 가시화 연구)

  • Yang, Jae-Hun;Chang, Jo-Won
    • Journal of the Korean Society of Visualization
    • /
    • v.4 no.2
    • /
    • pp.44-50
    • /
    • 2006
  • A visualization study on the boundary layer and near-wake of an NACA 0012 airfoil was con-ducted in order to investigate the influence of boundary layer behavior on the near-wake at low Reynolds numbers. The present study is investigated at static angles of attack ${\alpha}=0^{\circ},\;3^{\circ},\;6^{\circ}$ and $Re=2.3{\times}10^4,\;3.3{\times}10^4,\;4.8{\times}10^4$ by using a smoke-wire technique. The results of this study show that the laminar boundary layer on the airfoil surface is attached to the surface at ${\alpha}=0^{\circ}$, and that laminar separation of boundary layer on the airfoil surface occurs at ${\alpha}=3^{\circ}$. Furthermore, reattachment of the boundary layer occurs in the case of ${\alpha}=6^{\circ}$. In the current study, the location of the laminar separation point moves upstream as the Reynolds number and the angle of attack increase.

  • PDF

Influence of Boundary Layer Behavior on the Near-Wake of an NACA 0012 Airfoil (NACA 0012 에어포일의 경계층 거동이 근접 후류에 미치는 영향)

  • Yang, Jae-Hun;Kim, Dong-Ha;Chang, Jo-Won
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.4
    • /
    • pp.24-30
    • /
    • 2006
  • An experimental study was carried out in order to investigate the influence of boundary layer behavior on the near-wake at low Reynolds numbers. An X-type hot-film probe(55R51) was used to measure the near-wake of an NACA 0012 airfoil at static angles of attack ${\alpha}=0^{\circ}$, $3^{\circ}$, and $6^{\circ}$, and the Reynolds numbers Re=2.3${\times}10^4$, 3.3${\times}10^4$, and 4.8${\times}10^4$. The results of the study show that the characteristics of the boundary layer on the airfoil surface have a close relationship with the mean velocity and turbulence intensity profiles of a near-wake. Therefore, the development of the boundary layer, the position of the separation point, and the existence and non-existence of reattachment on the airfoil surface were represented by the differences in mean velocity and turbulence intensity profiles of the near-wake.

  • PDF