• 제목/요약/키워드: 저더

검색결과 32건 처리시간 0.023초

자동차용 디스크 브레이크의 열탄성 불안정성에 관한 연구 (Study on Thermoelastic Instability of Automotive Disc Brakes)

  • 최지훈;김도형;이인
    • 소음진동
    • /
    • 제11권2호
    • /
    • pp.315-322
    • /
    • 2001
  • This paper is focused on the frictionally induced thermoelastic instability (TEI) in automotive disk brakes. This instability leads to the formation of localized high temperature contact regions known as hot spots. This article investigates the themoelastic instability in automotive disk brake systems consisting of a finite thickness layer (disk) and two half-planes (pads) using a perturbation method. The antisymmetric mode involves hot spots located alternately on two sides of the disk. As a result the circumferentially periodic hot spots produce rotor surface distortion and Induce low frequency vibration. Also the effects of system parameters on the critical speed for TEI are investigated.

  • PDF

디스크 브레이크 저더 개선을 위한 신뢰성 향상 연구

  • 정원선;이창수;송현석;정도현
    • 한국신뢰성학회:학술대회논문집
    • /
    • 한국신뢰성학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.99-106
    • /
    • 2011
  • In this study, the analysis technique, which can estimate the temperature rise and thermal deformation of the ventilated disc considering the vehicle information, braking condition and properties of the disc and pad, is developed. The analytical process of the braking power generation during braking is mathematically derived. The thermal energy, which is applied to the surface of a disc as heat flux, is calculated. Then, the temperature rise and thermal deformation of a disc are estimated using FE software, SAMCEF. Shape of the cross section of the disc is optimized according to the response surface analysis method in order to minimize the temperature rise and thermal deformation. The hot judder analysis is done using the optimized disc, and the analysis results are discussed.

  • PDF

디스크 브레이크에서 열섬 현상이 발생되는 원인과 저더 진동에 미치는 영향 (The Origin and Effect of Hot Spot Phenomena on Judder Vibration in Automotive Disk Brake)

  • 조호준;조종두;김명구;맹주원;이재한
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.213-218
    • /
    • 2006
  • Hot spot phenomenon is caused by non-uniform contact area between brake pad and disk frequent braking. Brake disk deformed by locally concentrated heat increases magnitude of frictional vibration. And this deformation can highly influence the judder vibration. In this experimental study, vibration and hot spot was measured in accordance with rotation of disk and pressure of master cylinder for finding the factors that causes hot spot phenomena. For comparing hot spot aspects with mode shapes of disk, mode shapes were measured by conducting modal test, and analyzed by using finite element analysis. Relation between hot spot phenomenon, and mode shape, pressure of master cylinder and rotation speed of disk respectively, was achieved by hot spot measurement and frequency analysis.

  • PDF

FEM을 이용한 벤틸레이티드 디스크 브레이크 열응력 해석에 관한 연구 (A Study on Thermal Analysis in Ventilated Disk Brake by FEM)

  • 김성모
    • 한국생산제조학회지
    • /
    • 제18권5호
    • /
    • pp.544-549
    • /
    • 2009
  • Thermal brake judder caused by the high friction heat of the brake disk. Hot thermal judder makes serious problems such as to be unstability to drivers or to decrease braking force of automobile. Because thermal judder vibration makes high vibration occurrence and thermal deformation of brake disk. Therefore it Is necessary to reduce or eleminate thermal Judder phenomenon by understanding and investigation. This paper introduces the thermal deformation arising from friction heat generation in braking and proposes the FEM analysis to predict the distribution of temperature and thermal deformation. the results of the FEM analysis show the deformed shape and temperature distribution of the disk brake. The optimization is performed to minimize the thermal judder of ventilated disc brake that is induced by the thermal deformation of the disk brake.

  • PDF

LabView를 이용한 휴대형 브레이크 저더 측정 시스템 구현 (Implementation of the portable brake judder measurement system by use of the Labview)

  • 신동욱;김선형
    • 한국정보통신학회논문지
    • /
    • 제12권3호
    • /
    • pp.569-574
    • /
    • 2008
  • 자동차에서 디스크 편차 변이(Disk Thickness Variation : DTV)가 차체 진동 혹은 브레이크 페달 떨림 발생의 근원이 되므로 이를 운전자 보호차원에서 또는 생산 초기 출하시점에서 이를 검사할 수 있는 측정기기의 개발에 본 연구의 목적이 있다. 본 논문에서는 이런 DTV정보와 Labview 언어를 이용한 휴대용 Brake Judder측정 시스템을 개발하였다.

마찰을 고려한 차량 동력전달계의 Stick-Slip 현상에 관한 연구 (A Study on the Stick-Slip Phenomenon of the Driveline System of a Vehicle in Consideration of Friction)

  • 윤영진;홍동표;정태진
    • 한국자동차공학회논문집
    • /
    • 제3권4호
    • /
    • pp.19-29
    • /
    • 1995
  • This paper discusses the stick-slip phenomenon of the driveline system of a vehicle in consideration of friction. Friction is operated on the between of flywheel and clutch disk. The expressions for obtaining the results have been derived from the equation of motion of a three degree of freedom frictional torsion vibration system which is made up driving part(engine, flywheel), driven part(clutch, transmission) and dynamic load part(vehicle body) by applying forth-order Rungekutta method. It was found that the great affect parameters of the stick-slip or stick motion were surface pressure force between flywheel and clutch disk, time decay parameter of surface pressure force and 1st torsional spring constant of clutch disk when driveline system had been affected by friction force. The results of this study can be used as basic design data of the clutch system for the ride quality improvement of a car.

  • PDF

비전도 반평판 사이에서 미끄럼 운동하는 평판 층의 열탄성 불안정성 (Thermoelastic Instability of the Layer Sliding between Two Non-conducting Half-planes)

  • 하태원;조용구;김흥섭;이정윤;오재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.483-488
    • /
    • 2003
  • Frictional heating in brakes causes thermoelastic distortion of the contacting bodies and hence affects the contact pressure distribution. The resulting thermo-mechanical coupling can cause thermoelastic instability (TEI) if the sliding speed is sufficiently high, leading to non-uniform heating called hot spots and low frequency vibration known as hot judder. The vibration of brakes to the known phenomenon of frictionally-excited thermoelastic instability is estimated studying the interface temperature and pressure evolution with time. A simple model has been considered where a layer with half-thickness ${\alpha}$ slides with speed V between two half-planes which are rigid and non-conducting. The advantage of this properly simple model permits us to deduce analytically the critical conditions for the onset of instability, which is the relation between the critical speed and the growth rate of the interface temperature and pressure. Symmetrical component of pressure and temperature distribution at the layer interfaces can be more unstable than antisymmetrical component. As the thickness ${\alpha}$ reduces, the system becomes more apt to thermoelastic instability. Moreover, the evolution of the system beyond the critical conditions has shown that even if low frequency perturbations are associated with low critical speed, it might be less critical than high frequency perturbations if the working sliding speed is much larger than the actual critical speed of the system.

  • PDF

열부하 및 회생 제동 특성을 고려한 경형 친환경차의 제동시스템 개발에 관한 연구 (A Study on Development of Brake System of Light Eco-Friendly Car Considering Heat Load and Regenerative Braking Characteristic)

  • 심재훈;신웅희;이중희;황세라;임원석;김병철
    • 자동차안전학회지
    • /
    • 제12권2호
    • /
    • pp.7-13
    • /
    • 2020
  • Recently, there is a big issue of downsizing on brake system according to fuel efficiency and regenerative braking cooperation control. Especially, small cars have improved in a variety ways such as electric vehicle and smart car compared to previous small cars. So, small brake system is strongly required in the car industry. A new small brake system for light compact vehicles was proposed in this paper. For this system, the solid type disc and caliper were newly developed. And the important design factors were considered to reduce brake size. First, we calculated the temperature rise of disc through heat capacity formula and CAE analysis. Second, we analyzed the housing and carrier stiffness of caliper to select the reasonable condition. Finally, the superiorities of the developed brake system were verified by heat capacity, consumption liquid level, braking feeling, judder, wear test and regenerative braking cooperation control analysis. A developed brake system is expected to be useful for brake system of light compact platform.

단단한 비전도 반평판 사이에서 미끄럼 운동하는 평판층의 열탄성 불안정성 (Thermoelastic Instability of the Layer Sliding between Two Rigid Non-conducting Half-planes)

  • 오재응;하태원;조용구;김흥섭;이정윤
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.114-121
    • /
    • 2004
  • Frictional heating in brakes causes thermoelastic distortion of the contacting bodies and hence affects the contact pressure distribution. The resulting thermo-mechanical coupling can cause thermoelastic instability (TEI) if the sliding speed is sufficiently high, leading to non-uniform heating called hot spots and low frequency vibration known as hot judder. The vibration of brakes to the known phenomenon of frictionally-excited thermoelastic instability is estimated studying the interface temperature and pressure evolution with time. A simple model has been considered where a layer with half-thickness$\alpha$slides with speed V between two half-planes which are rigid and non-conducting. The advantage of this properlysimple model permits us to deduce analytically the critical conditions for the onset of instability, which is the relation between the critical speed and the growth rate of the interface temperature and pressure. Symmetrical component of pressure and temperature distribution at the layer interfaces can be more unstable than antisymmetrical component. As the thickness $\alpha$ reduces, the system becomes more apt to thermoelastic instability. For perturbations with wave number smaller than the critical$m_{cr}$ the temperature increases with m vice versa for perturbations with wave number larges than $m_{cr}$ , the temperature decreases with m.

디스크 브레이크에서 접촉 마찰 진동이 열섬에 미치는 영향 연구 (A Study of Frictional Contact Vibration Influence on Hot Spot in Automotive Disk Brake)

  • 조후준;김명구;조종두
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.154-161
    • /
    • 2007
  • Hot spot phenomenon that occurs, during judder vibration, is locally concentrated heat due to friction between brake disk and pad. It is important to understand the reason behind hot spot phenomenon, for reduction of judder vibration. In this experimental study, experiments were performed in accordance with rotation speed of brake disk, pressure of master cylinder and pad length for achieving different aspects of hot spot phenomenon. Temperature distribution of hot spot was obtained by using the infrared camera. As the hot spot occurred, vibration was measured and frequency analysis was performed. Finite element analysis of thermal deformation of disk was performed by using temperature distribution that was achieved by experimental results. And mode shapes of disk was analyzed by finite element analysis and compared with experimental results. It was observed that the excitation frequency band of frictional contact and frictional force mainly affects the hot spot phenomenon.