• Title/Summary/Keyword: 저고도 운용 항공기

Search Result 13, Processing Time 0.018 seconds

A Study on the Separation Minima for Urban Air Mobility in Low-Density Operation Environments (저밀도 운용 환경에서의 도심항공교통 분리 기준에 관한 연구)

  • Hyoseok Chang;Dohyun Kim;Jaewoo Kim;Daniel Kim;Heeduk Cho
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.710-715
    • /
    • 2023
  • Urbanization brings many challenges such as traffic, housing, and environment. To solve these problems, researchers are working on new transportation systems like urban air mobility (UAM). UAM aircraft should fly safely without burdening the existing air traffic system in the early stage of low-density operation. The airspace should also be managed and operated efficiently. Therefore it is important to make urban air traffic predictable by using corridors and collecting data on low-density operations in the early stage. For this purpose various simulations are needed before operation to create scenarios that estimate potential collisions between UAM aircraft and to evaluate the risks of aircraft spacing, loss of separation (LoS), and near mid air collision (NMAC). This paper focuses on identifying the requirements and considerations for setting separation standards for urban air traffic based on the results of studies.

Research on The Crash Location and Speed Distribution of Low Altitude Fixed-Wing Aircraft (저고도 운용 고정익 항공기의 고장 시 추락지점 및 속도 분포 연구)

  • Nam, Hong-Su;Park, Bae-Seon;Lee, Hak-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.1
    • /
    • pp.59-66
    • /
    • 2022
  • In order to solve the problem of urban traffic congestion, Urban Air Mobility (UAM) concept using Electric Vertical Take-off and Landing (eVTOL) aircraft has been gaining popularity, and many domestic and international studies are underway. However, since these aircraft inevitably fly over densely populated areas, it is essential to ensure safety, which starts with accurately analyzing the crash risk. In this paper, the locations and impact speeds of crash are computed using six degree-of-freedom simulations of an eVTOL aircraft in a fixed-wing mode. System malfunction was modeled by a sudden loss of thrust with control surfaces being stuck during cruise. Because most of these eVTOL aircraft are still under development, a methodology of constructing a six degree-of-freedom dynamics model from generic specification is also developed. The results show that the crash locations are highly concentrated right under the aircraft within a square that has an edge length similar to the cruise altitude. Speed distribution is more complicated because almost identical crash locations can be achieved by two very different paths resulting in a large variation in the speeds.

Coverage Analysis of VHF Aviation Communication Network for Initial UAM Operations Considering Real Terrain Environments (실제 지형 환경을 고려한 초기 UAM 운용을 위한 VHF 항공통신 커버리지 분석)

  • Seul-Ae Gwon;Seung-Kyu Han;Young-Ho Jung
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.102-108
    • /
    • 2024
  • In the initial stages of urban air mobility (UAM) operations, compliance with existing visual flight rules and instrument flight regulations for conventional human-crewed aircraft is crucial. Additionally, voice communication between the on board pilot and relevant UAM stakeholders, including vertiports, is essential. Consequently, very high frequency (VHF) aviation voice communication must be consistently provided throughout all phases of UAM operations. This paper presents the results of the VHF communication coverage analysis for the initial UAM demonstration areas, encompassing the Hangang River and Incheon Ara-Canal corridors, as well as potential vertiport candidate locations. By considering the influence of terrain and buildings through the utilization of a digital surface model (DSM), communication quality prediction results are obtained for the analysis areas. The three-dimensional coverage analysis results indicate that stable coverage can be achieved within altitude corridors ranging from 300 m to 600 m. However, there are shaded areas in the low-altitude vertiport regions due to the impact of high-rise buildings. Therefore, additional research to ensure stable coverage around vertiports in the lower altitude areas is required.