• Title/Summary/Keyword: 재순환(recirculation)

Search Result 458, Processing Time 0.025 seconds

Analyses of Settlement Characteristics Evaluating the Applicability of Bioreactor Landfills on MSW Landfills (바이오리액터 매립공법의 폐기물 매립지에 적용가능성 평가를 위한 침하특성 분석)

  • Jo, Young-Seok;Jang, Yeon-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.5
    • /
    • pp.17-24
    • /
    • 2020
  • In order to analyze the effect of applying the bioreactor landfills on the waste landfill for acceleration of waste biocompression, a settlement experiment was performed. The secondary compression indices (Cα) were analyzed, and compared with the results of experimental studies conducted in other countries. Analyses of Cα from the experiment showed that the recirculation method of mixing leachate and FWL could accelerate the waste settlement as much as 2.9 times and 2 times more than the leachate recirculation and the sanitary landfills due to additional biocompression generated by the organic matter in FWL. The Cα in this study was smaller than the Cα of the other studies due to the low organic content of the waste in accordance with domestic waste policies to reduce food waste. The relation between biodegradable waste content and Cα was analyzed. The Cα of the waste was shown to be sensitive to biodegradable waste content, and become higher as the content of the biodegradable waste increases.

Conditions Affecting Vegetable Waste Composting (야채쓰레기의 효율적 퇴비화를 위한 운영조건)

  • Choi, Jung-Young;Namkoong, Wan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.2 no.1
    • /
    • pp.19-29
    • /
    • 1994
  • The purpose of this study was to investigate the feasibility of composting of vegetable wastes containing high moisture. The parameters investigated were the effect of energy source addition, difference in bulking agent and recirculation of leachate produced during composting. Laboratory scale composting reactors were used in this study. Chinese cabbages were used as a vegetable waste. Dog food was added to the vegetable waste as a energy source. Wood chips and leaves of platan were used as bulking agents. There may be an appropriate amount of energy source to be added for composting high moisture content vegetable waste. In this study, the appropriate amount of energy source was 20% of the vegetable waste by weight basis. Recirculation of total amount of leachate produced each day on the same day may not be an appropriate approach due to the significant heat-quenching effect. When the total amount of leachate produced was equally devided and recirculated everyday through the whole composting period, the heat-quenching effect was comparatively less significant. There were no notable differences in the temperature profile and the $CO_2$ evoluation rate when leaves were used instead of wood chips as bulking agents. Considering waste recycling, it is desirable to use leaf waste as bulking agents if available, because the leaves are also wastes to be disposed of.

  • PDF

Parametric Study of Instability in Obstructed Channel Flow (장애물이 부착된 평판 사이 유동의 불안정성에 관한 파라미터적 연구)

  • Hwang, In-Sang;Yang, Gyeong-Su;Kim, Do-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.546-553
    • /
    • 2001
  • A Parametric study is numerically carried out for flow fields in a two-dimensional plane channel with thin obstacles(“baffles and blocks”) mounted symmetrically in the vertical direction and periodically in the streamwise direction. The aim of this investigation is to understand how various geometric conditions influence the critical characteristics and pressure drop. A range of BR(the ratio of baffle interval to channel height) between 1 and 5 is considered. Especially when BR is equal to 3, for which the critical Reynolds number turned out to be minimal, we add blocks in the center region in order to study their destabilizing effects on the flows. It is revealed that the critical Reynolds number is further decreased by the presence of the block.

A Study on the Flow Characteristics of a Sleeve-Jointed Adjusting Piece (슬리브 이음된 조정관에서의 유동 특성에 관한 연구)

  • Lee, Chang-Yong;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.145-152
    • /
    • 2021
  • The purpose of this study was to determine the optimal distances between pipes to minimize the pressure loss and turbulent intensity. This was accomplished by investigating the distances between sleeve-jointed pipes and the flow changes in pipes based on variations in the Reynolds (Re) number when installing adjusting pieces for the pipes. When the thickness tp of the sleeve-jointed piping was fixed at 5 mm and the pipe lengths Lp were 10, 50, 100, and 200 mm, the correlations with the velocity of the sleeve-jointed part, pressure distribution, length of the reattachment point in the recirculation area, and Re number were analyzed. The flow characteristic of the sleeve-jointed part from a laminar to a turbulent flow region was determined by setting the Re range to 200 ≤ Re ≤ 5,000. This was done by utilizing Ansys Fluent 18.1, which is a commercial program. The enlargement and contraction ratios of the sleeve-jointed part were 1.2 and 0.83, respectively, and the turbulent intensity of the sleeve downstream edge and pressure change both increased as the Re number increased while Lp remained constant. The fact that the flow on the sleeve wall surface was disturbed by tp resulted in losses in velocity energy. Therefore, the edge of the sleeve-jointed part was also effected. When Lp was 10 mm or less, the turbulent intensity of the edge part did not change significantly as the Re number increased. The reattachment point in the recirculation area did not appear at Lp of 10 mm or less and was not affected by the vortex. In the case of 3,000 ≤ Re, the reattachment length of the wall surface of the sleeve-jointed part was nearly constant as Lp increased.

Study on Detailed Air Flows in Urban Areas Using GIS Data in a Vector Format and a CFD Model (벡터 형식의 GIS 자료와 CFD 모델을 이용한 도시 지역 상세 대기 흐름 연구)

  • Kwon, A-Rum;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.755-767
    • /
    • 2014
  • In this study, detailed air flow characteristics in an urban areas were analyzed using GIS data and a Computational Fluid Dynamics (CFD) model. For this, a building construction algorithm optimized for Geographic Information System (GIS) data with a vector format (Los Angeles region imagery acquisition consortium 2 geographic information system, LARIAC2 GIS) was used. In the LARIAC2 GIS data, building vertices were expressed as latitude and longitude. Using the model buildings constructed by the algorithm as the surface boundary data in the CFD model, we performed numerical simulations for two building-congested areas in Los Angeles using inflow information provided by California Air Resources Board. Comparing with the inflow, there was a marked difference in wind speed and direction within the target areas, which was mainly caused by the secondarily induced local circulations such as street-canyon vortices, horse-shoe vortices, and recirculation zones. In street canyons parallel to the inflow direction, wind speed increased due to a channeling effect and, in street canyons perpendicular to the inflow direction, vertically well developed vortices were induced. In front of a building, a horse-shoe vortex was developed near the surface and, behind a building, a recirculation zone was developed. Near the surface in the areas where the secondarily induced local circulations, wind speed remarkably increased. Overall, wind direction little (largely) changed at the areas where wind speed largely increased (decreased).

Comparison of Combustion Characteristics On the Basis of the Dilution Ratio in Diesel Engines with LPL EGR (저압 EGR을 적용한 디젤엔진의 희석비에 따른 연소 특성 비교)

  • Lim, Gi-Hun;Park, Jun-Hyuk;Choi, Young;Lee, Sun-Youp;Kim, Yong-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.525-531
    • /
    • 2011
  • Exhaust gas recirculation (EGR) is more effective than selective catalytic reduction (SCR) or lean $NO_x$ trap (LNT) for the reduction of $NO_x$ emissions in diesel engines. A large amount of EGR gas is necessary to satisfy the stringent regulations on $NO_x$ emissions. Low pressure loop (LPL) EGR is almost independent of the variable geometry turbocharger (VGT) at a specific boost pressure, so LPL EGR is better than conventional high pressure loop (HPL) EGR in terms of EGR supply. We compare the influence of HPL EGR and LPL EGR on the combustion characteristics at a constant boost pressure in a diesel engine. The dilution ratio was employed as an independent parameter to analyze the effect of the dilution of the intake charge for each EGR loop. At the same level of $NO_x$ emissions, the fuel consumption and smoke opacity were slightly lower for LPL EGR than for HPL EGR.

Analysis of the Relationship between the Seasonal Temperature Change and the Electrical Resistivity Value of Landfill Site (매립지의 계절별 온도변화와 전기비저항값의 상관성 분석)

  • Sim, Nak Jong;Ryu, Don Sik;Kim, Chang Gyun;Lee, Chul Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.9
    • /
    • pp.534-541
    • /
    • 2017
  • The bioreactor type of landfill is to operate to enhance waste decomposition by continuously supplying water such as leachate and wastewater within the landfill, which helps increase the landfill gas production, which in turn prematurely stabilize the landfill. Recently, the environmental law for the operation of the bioreactor type of landfill has been enacted and thereafter the bioreactor type of landfill has been introduced for the first time in Korea to the SUDOKWON landfill site. In order to properly apply for bioreactor to the landfill, it is necessary to investigate the water distribution inside the landfill so that water recirculation should be optimally allocated with the zone of concern. In this regard, electrical resistivity survey has been suitably performed to delineate the water distribution in the landfill. That is, it has surveyed for long-term of period that the recirculation of leachate has been properly reflected from electrical resistivity within the second landfill of SUDOKWON landfill site. As a result, the electrical resistivity immediately corresponded to the variation of the extent of the seasonal temperature dynamics. From this, a calibratrion could be accomplished by correlating between temperature and electrical resistivity obtained from this study that can be applicable for optimally monitoring to keep the ideal operating condition for the bioreactor type of landfill.

Characteristics of Combustion and Thermal Efficiency for Premixed Flat Plate Burner Using a Porous Media (다공성 소재 종류에 따른 예혼합 평판버너의 연소 및 열효율 특성에 관한 연구)

  • Kum, Sungmin;Yu, Byeonghun;Lee, Chang-Eon;Lee, Seungro
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.385-392
    • /
    • 2012
  • The purpose of this study is investigated on the combustion and the thermal characteristics of porous media burners which are many using for a condensing boiler recently. In addition, results of this study will be used the fundamental information to decide the burner type which will be applied to the future development of EGR(Exhaust gas recirculation) condensing boiler. Two flat type of burners made of a the metal fiber(MF) and the ceramic(CM) were selected and examined, experimentally. As experimental results, the emitted CO concentration of CM was higher than that of MF. However, the NO concentration of MF was higher than that of CM. The efficiencies of both burners were increased as increasing the burner capacity. While the efficiency of MF was higher than that of CM, regardless of the burner capacity. In the experimental range, MF is appropriated for the burner material and 0.8 of equivalence ratio is an optimal operation condition, regarding of the proportional control, the thermal efficiency and emitted NO and CO concentration based on the regulations of KS B standard and EN 677 standard.

NOx Formation and Emission Characteristics of Premixed Swirl Flame of Natural Gas (천연가스 선회 예혼합 화염의 NOx 생성 및 배출 특성)

  • You, Hyun-Seok;Lee, Joong-Seong;Han, Jeong-Ok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.6
    • /
    • pp.788-794
    • /
    • 1999
  • The swirl flame is mostly used to stabilize the flame on the burner nozzle in the industrial combustor. In the case of the weak swirl flame(S<0.4), the recirculation zone could not be formed, but in the strong swirl(S>0.6) flame, it could be formed in the center of the swirl flame. In this study, the measurement and analysis of emission species, temperature, radicals of premixed swirl flame in the combustor were performed to understand the NO formation and emission characteristics of the swirl flame of natural gas. The result of NO emission in the swirl flame is that the amount of NO emission in the strong swirl flame decreased about 60% compared with that of the weak swirl flame. The main region of NO formation of the weak swirl flame is positioned in the down stream(z=100~200mm) of the flame, but that of the strong swirl flame is positioned in the up stream(z=40mm) where the recirculation zone seems to be formed. It is supposed that the increase of flame surface and the formation of inversed flame cause the reduction of the high temperature region on the production of NO in the strong swirl flame. The result of NO-temperature relation revealed that the factor of NO formation is not only temperature but also another parameters in the weak swirl flame, but in the strong swirl flame, NO is proportional to the temperature of higher than 1200K.

Optimal Design of RSOFC System Coupled with Waste Steam Using Ejector for Fuel Recirculation (연료 재순환 이젝터를 이용한 연료전지-폐기물 기반 가역 고체 산화물 연료전지의 최적 설계)

  • GIAP, VAN-TIEN;LEE, YOUNG DUK;KIM, YOUNG SANG;QUACH, THAI QUYEN;AHN, KOOK YOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.4
    • /
    • pp.303-311
    • /
    • 2019
  • Reversible solid oxide fuel cell (RSOFC) has become a prospective device for energy storage and hydrogen production. Many studies have been conducted around the world focusing on system efficiency improvement and realization. The system should have not only high efficiency but also a certain level of simplicity for stable operation. External waste steam utilization was proved to remarkably increase the efficiency at solid oxide electrolysis system. In this study, RSOFC system coupled with waste steam was proposed and optimized in term of simplicity and efficiency. Ejector for fuel recirculation is selected due to its simple design and high stability. Three system configurations using ejector for fuel recirculation were investigated for performance of design condition. In parametric study, the system efficiencies at different current density were analyzed. The system configurations were simulated using validated lumped model in EBSILON(R) program. The system components, balance of plants, were designed to work in both electrolysis and fuel cell modes, and their off-design characteristics were taken into account. The base case calculation shows that, the system with suction pump results in slightly lower efficiency but stack can be operated more stable with same inlet pressure of fuel and air electrode.