• Title/Summary/Keyword: 재생콘크리트

Search Result 344, Processing Time 0.021 seconds

Evaluation of Properties of Recycled Concretes for use in Surface and Base Course Concrete (도로표층 및 기층용 콘크리트로 재생 콘크리트의 특성 연구)

  • 김광우;도영수;이상범;정일권
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.27-32
    • /
    • 1999
  • This study was performed to evaluate properties of recycled concrete for roadway pavement. Recycled concretes was manufactured for the target compressive strength of 280kg/$\textrm{cm}^2$ and 180kg/$\textrm{cm}^2$ with recycled aggregate ratio of 0%, 20%, 40%, 60%, 80%, respectively. Laboratory experiment was conducted for testing properties of fresh concrete and concrete strength at curing 28days and durability by freezing and thawing treatment. The study result presented a maximum replacement ratio of recycled material.

  • PDF

Evaluation of Fundamental Properties of Warm-mix Recycled Asphalt Concretes (준고온 재생 아스팔트 콘크리트의 기본특성 평가)

  • Kim, Nam-Ho;Kim, Jin-C.;Hong, Jun-P.;Kim, Kwang-W
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.111-120
    • /
    • 2010
  • This study evaluated strength properties of recycled asphalt concretes using warm-mix technology. Granite with maximum size of 13mm and penetration grade of 80-100 virgin binder were used for mixing in recycled mixtures. Mix design was performed using 20% and 30% RAP(coarse : fine= 6 : 4) contents. GPC, penetration, absolute viscosity and kinematic viscosity were measured for determining ratio of two warm-mix additives (Evotherm and Sasobit). Low-density polyethylene(LD) used as asphalt modifier for improving stiffness of recycled WMA mixtures in this study. Therefore, a total of 11 mixtures were prepared in this study; 8 warm-mix recycled mixtures(2 RAP contents${\times}$2 warm-mix additives${\times}$2 modifiers), 2 hot-mix recycled mixtures and 1 HMA virgin mixture(control). Deformation strength, indirect tensile strength, moisture sensitivity, permanent deformation by wheel tracking tests were measured out for evaluating fundamental properties of recycled asphalt concretes using warm-mix technology.

The Surface Sealing Performance of Film, Air cap and Polystyrene foam for Preventing Carbonation of High-Volume Slag Concrete (고로슬래그 미분말 다량치환 콘크리트의 탄산화 억제를 위한 기밀성 향상재 부착효과)

  • Han, Dongyeop;Kim, Kyunghoon;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.1
    • /
    • pp.9-16
    • /
    • 2015
  • The goal of this research was evaluating and suggesting the solution of preventing carbonation of concrete replaced high-volume of slag. The concrete mixtures were prepared with high-volume slag and recycled aggregate, and the concrete samples were evaluated the carbonation depth with various surface treatment methods. For various surface treatment methods and surface protecting sheets, bonding strength and carbonation depth were measured. Basically, from the results, the carbonation of concrete was completely prevented with any type of surface treatment method and surface protecting sheet as far as the surface treatment materials were remained. Therefore, in this research, it was known and suggested that the easiness of handling and sufficient bonding performance was much important than the quality of surface protecting sheets.

Structural Behavior of Reinforced Concrete Frames Strengthened with Infilled Wall Using Concrete Blocks Made in Recycled Aggregates (재생콘크리트 보강블록 끼움벽체로 보강한 철근콘크리트 골조의 구조거동)

  • Kim Sun-Woo;Lee Gab-Won;Park Wan-Shin;Han Byung-Chan;Choi Chang-Sik;Yun Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.76-79
    • /
    • 2004
  • The use of recycled aggregate concrete is increasing faster than the development of appropriate design recommendations. This paper is making advances in the recycling of waste concrete material for use as recycled aggregate to make secondary concrete product. Using recycled aggregates from demolished concrete, we manufactured concrete blocks to experiment overall performance in feasible performances. This paper reports limited experimental data on the structural performance of shear wall used concrete blocks made in recycled aggregates. Reinforced concrete frame and shear walls were tested to determine their diagonal cracking and ultimate shear behavior. The variable in the test program was the existence of infilled wall used concrete blocks Made in recycled aggregates. Based on the experimental results, Infilled wall has a high influence on the maximum strength and initial stiffness of reinforced concrete frame. Structural performance of specimen WSB1 and WSB2 is quite different from RCF specimen, particularly strength, stiffness and energy dissipation capacity.

  • PDF