• Title/Summary/Keyword: 재생용 사업

Search Result 65, Processing Time 0.024 seconds

Normal Operation Characteristics of 30kW Scale CVCF Inverter-Based Micro-grid System (30kW급 CVCF 인버터 기반의 Micro-grid의 정상상태 운용특성에 관한 연구)

  • Ferreira, Marito;Lee, Hu-Dong;Tae, Dong-Hyun;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.662-671
    • /
    • 2020
  • Recently, for the purposes of reducing carbon dioxide(CO2) emissions in the island area, countermeasures to decrease the operation rate of diesel generator(DG) and to increase one of renewable energy sources(RES) is being studied. In particular, the demonstration and installation of stand-alone micro-grid(MG) system which is composed of DG, RES and energy storage system(ESS) has been implemented in some island areas such as Gapa-do, Gasa-do and Ulleung-do island. However, many power quality(PQ) problems may be occurred due to an intermittent output of RES including photovoltaic(PV) system and wind power(WP) system in a normal operating of constant voltage & constant frequency(CVCF) inverter-based MG system. Therefore, this paper presents a modeling of the 30kW scale MG system using PSCAD/EMTDC, and also implements a 30kW scale CVCF inverter-based MG system as test devices to analyze normal operating characteristics of MG system. From the simulation and test results, it is confirmed that the proposed methods are useful and practical tools to improve PQ problems such as under-voltage, over-voltage and unbalanced load in CVCF inverter-based MG system.

A Study on ESS-based Clean Energy, Smart Home IoT Platform (ESS기반 클린에너지, 스마트홈 IoT 플랫폼 연구)

  • Kim, Hee-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.147-152
    • /
    • 2018
  • This study investigates the demand management and energy saving plan of the apartment house based on the ESS (: Energy Storage System), which is the main equipment in the field of electric power energy efficiency, and suggests standardization for various technical factors and operation. It contributes to the spread of ESS industry. In addition, to create ESS market for apartment houses and smart homes, housing IoT technology is used to integrate apartment houses with smart home-based ESS and it is possible to achieve use efficiency and economic feasibility of power users, We will study a business model that can reconsider the acceptability of power users.

A Study on the Supply Methods of Heating Energy in Rural Regions by Using Wood Chips -Focusing on the Production Method of Wood Chips for Fuel though Natural Drying Method- (목재칩을 이용한 농촌지역 난방에너지 공급 방법 연구 -자연건조 방식을 통한 연료용 목재칩 생산방법을 중심으로-)

  • An, Byeong-IL;Ko, Kyoung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.401-408
    • /
    • 2021
  • Supplies of wood chips for fuel tend to increase owing to energy decentralization and new renewable energy policies. This study suggests a technical method that is necessary in order to supply heating energy to rural regions by using wood chips for fuel. Therefore, this study investigates the effects of natural drying methods for eight months by installing a drying facility with natural ventilation capable of loading 10 tons of wood chips, and which derive a natural drying method based on this to meet the quality standards of wood chips for fuel. The study results confirm that it is possible to produce wood chips for high-quality fuel with water content at 20% or less after around 90 days of drying, provided that a drying facility with natural ventilation is equipped with materials that can be procured easily in rural regions. It is also possible to block the proliferation and fermentation of molds that affect the quality of wood chips, provided that intake and exhaust systems adhering to standards are equipped.

Commercializing Technology Development of Bipolar Plates for Polymer Electrolyte Membrane Fuel Cell (고분자연료전지용 분리판 상용화 기술개발)

  • Kim, Jeong-Heon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.3
    • /
    • pp.409-414
    • /
    • 2011
  • To promote the industry of PEMFC, the commercialization of its parts especially bipolar plate is needed. The bipolar plate is one of key parts for PEMFC, which occupies cost portion of 5~8% in the system. To replace the bipolar plate of machined graphite highly costly, the stamped thin matal or the molded carbon composite has been developed. According to the merits and demerits of each material and its forming process, the stamped metallic plate has been considered to the bipolar plate of PEMFC for automotive, and on the other hand, the molded composite plate has been considered to one for building applications. Hankook Tire Co., Ltd. has developed the carbon composite material and the manufacturing process for the bipolar plates. The developed bipolar plates were proved to be fully applicable to PEMFC of building applications in characteristics and performance, and so government strategic project to develop the mass-production technology for bipolar plates was started and is being conducted by the company. Through the government project for obtaining both the commercialization technology and production capacity for the bipolar plates, the price and the performance of domestic PEMFCs are expected to become competitive in international market.

A study on the relationship between the existing building load for the advance ZEB certification system (ZEB 인증제 고도화를 위한 기존 건축물 부하별 연관성 연구)

  • Lee, Hangju;Maeng, Sunyoung;Kim, Insoo;Ahn, Jong-Wook
    • Journal of Energy Engineering
    • /
    • v.27 no.3
    • /
    • pp.21-27
    • /
    • 2018
  • In accordance with the implementation of the Zero Energy Building Certification System, it for the activation and expansion of the private sector is being steadily upgraded. Also The government has set up a step-by-step mandatory roadmap until it is expanded to the private sector, starting with the public sector. We analyzed the energy requirements of existing buildings from 2016 to 2017 and the by load relationships of major factor. Of the existing buildings, 714 buildings in central and southern areas excluding residential buildings such as apartments and officetels were classified and their primary energy requirements were analyzed. As new design technologies are applied, the demand for energy from the passive side is steadily declining. In addition, there is a need to interpret various methods to improve the zero energy building certification standard in the point that the zero energy building pilot project is continuously carried out in relation to the activation of renewable energy supply.

Development of Self-Consumption Smart Home System (에너지 자립형 스마트 홈 시스템 개발)

  • Lee, Sanghak
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.2
    • /
    • pp.42-47
    • /
    • 2016
  • Due to advances such as photovoltaic power generation and energy storage system, energy self-consumption smart home system in which energy management system is built and energy is generated in house has been actively researched. In particular, due to the instability of the grid after the Fukushima nuclear accident, home system in which generating electricity from photovoltaic, storing and using it in energy storage system was commercialized in Japan. While subsidizing renewable energy projects through a combination of solar and energy storage systems in North America and Europe has expanded home installation. In this paper, we describe development of self-consumption smart home system which is connecting photovoltaic system and energy storage system in home area network and operating it based on real-time price. We implemented automated self-consumption home in which optimizing the use of energy from the power grid with minimal user's intervention.

Feasibility study of indirect coal liquefaction process (석탄 간접액화 공정의 경제성 분석)

  • Kim, Hak-Joo;Jung, Heon;Lee, Ho-Tae;Yang, Jung-Il;Chun, Dong-Hyun;Yang, Jung-Hoon;Park, Ji-Chan;Kim, Byung-Kwon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.76.2-76.2
    • /
    • 2011
  • 석탄으로부터 합성석유를 생산하는 상용기술을 도입하여 건설하고 이와 더불어 원천기술 개발을 위한 국산화 기술 개발을 병행하여 향후 고유가 시대를 대비한 국가 에너지 안보 확립과 국내 기술 개발의 가속화를 추구해야 할 필요성이 대두되고 있다. 본 타당성 조사는 3종류의 석탄(호주 Wyong탄, 인도네시아 NTC탄, 인도네시아 KBB탄)으로부터 가스화에 의하여 합성석유스를 생산하는 공정에 대한 타당성 조사(Feasibility Study, FS)를 Class 5(하한 -50~-20%, 상한 30~100%)의 정확도로 수행하는 것을 내용으로 하고 있다. 플랜트의 규모는 합성석유 기준으로 20,000배럴/일이다. 플랜트의 건설을 위해서 광양제철소 슬래그처리장 내 12만평 부지에 조성 중인 포스코 SNG 생산공장 부지의 일부를 사용하는 것을 기준으로 하였다. 일반적으로 석탄의 종류에 따라서 가스화기의 종류 및 성능이 결정된다. 본 타당성 조사 연구에서 선정된 3종류의 석탄의 조성, 발열량, 회분 함량 등의 특성을 고려하여 각각의 석탄에 적합한 현존하는 상용급 가스화기를 선정하였다. 해당 석탄이 가스화기 종류에 따라 적절한 전처리 과정(건조, 분쇄, 슬러리화)을 거친 후 가스화기에 공급되는 것을 가정하여 석탄의 원소분석 조성, 발열량, 회분함량, 회분조성, 회 용융점 등의 변수에 따라서 각각 해당 가스화기에서 가스화되었을 때의 생성되는 합성가스의 조건을 시뮬레이션을 통하여 얻었다. 가스화기 시뮬레이션 결과를 토대로 합성석유 및 합성천연가스 생산을 위한 공정의 물질수지식 및 에너지수지식이 계산되었으며 이로부터 각 공정에서 발생되는 부생성물과 폐기물에 대한 양이 결정되고 이를 처리하는 방안 등도 제시되었다. 실증시설은 20,000배럴/일 규모의 CTL 및 전기 병산 시설이 적합하다. 더 큰 규모 공장은 투자비가 너무 커서 유가 또는 석탄가 변동에 따라 사업의 수익성이 크게 변하여 위험도가 큰 단점이 있기 때문이다. CTL 공장에 전기 병산이 추천되는 이유는 산소생산공장(APU), 압축 등 석탄전환공장에는 자체적인 전기수요가 막대하여 따로 스팀터빈용 발전소를 운영하므로 이를 효율적으로 대체하고자 하기 때문이다. 즉, 석탄가스화에 의해 기름을 최대한 만들고 미반응가스는 가스터빈 및 스팀터빈의 복합발전에 의해 고효율로 전기를 생산하면 최소의 비용으로 최대한 전기를 생산하여 자체소비 전력을 충당하고 남는 전기는 판매하여 수익률을 높일 수 있다.

  • PDF

A Study on the Development of H2 Fuel Cell Education Platform: Meta-Fuelcell (연료전지 교육 플랫폼 Meta-Fuelcell 개발에 관한 연구)

  • Duong, Thuy Trang;Gwak, Kyung-Min;Shin, Hyun-Jun;Rho, Young-J.
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.29-35
    • /
    • 2022
  • This paper proposes a fuel cell education framework installed on a Metaverse environment, which is to reduce the burden of education costs and improve the effect of education or learning. This Meta-Fuel cell platform utilizes the Unity 3D Web and enables not only theoretical education but also hands-on training. The platform was designed and developed to accommodate a variety of unit education contents, such as ppt documents, videos, etc. The platform, therdore, integrates ppt and video demonstrations for theoretical education, as well as software content "STACK-Up" for hands-on training. Theoretical education section provides specialized liberal arts knowledge on hydrogen, including renewable energy, hydrogen economy, and fuel cells. The software "STACK-Up" provides a hands-on practice on assembling the stack parts. Stack is the very core component of fuel cells. The Meta-Fuelcell platform improves the limitations of face-to-face education. It provides educators with the opportunities of non-face-to-face education without restrictions such as educational place, time, and occupancy. On the other hand, learners can choose educational themes, order, etc. It provides educators and learners with interesting experiences to be active in the metaverse space. This platform is being applied experimentally to a education project which is to develop advanced manpower in the fuel cell industry. Its improvement is in progress.

Feasibility of Present Soil Remediation Technologies in KOREA for the Control of Contaminated Marine Sediment: Heavy Metals (우리나라 현존 토양정화 기술의 해양오염퇴적물 정화사업 적용 가능성 검토: 중금속)

  • Kim, Kyoung-Rean;Choi, Ki-Young;Kim, Suk-Hyun;Hong, Gi-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.12
    • /
    • pp.1076-1086
    • /
    • 2010
  • Soil remediation technologies were experimented to evaluate whether the technologies could be used to apply remediation of contaminated marine sediment. In this research, marine sediments were sampled at "Ulsan" and "Jinhae" where remediation projects are considered, and then the possibility of heavy metal removal was evaluated throughout the technologies. Heavy metal concentration of silt and clay fraction was higher than that of sand fraction at "Ulsan". Heavy metal removal of the silt and clay fraction was arsenic (As) 81.5%, mercury (Hg) 93.8% by particle separation, cadmium (Cd) 72.2%, mercury (Hg) 93.8% by soil washing technology, cadmium (Cd) 70.8%, lead (Pb) 65.6% by another soil washing technology. Based on experimental results, tested particle separation and soil washing technologies could be used to remove heavy metals of sand fraction and silt and clay fraction. Heavy metal removal by soil washing technology which was composed of separation, washing and physical or chemical reaction by additives such as acid, organic solvents was more effective comparing to that of particle separation. Since heavy metal concentration of all treated samples was suitable for national soil standards, all the tested technologies were could be used not only to remove heavy metals of marine contaminated sediment but also to reuse treated samples in land.

Heating Performance Analysis of the Heat Pump System for Agricultural Facilities using the Waste Heat of the Thermal Power Plant as Heat Source (발전소 폐열을 이용한 농업시설용 히트펌프시스템의 난방 성능 분석)

  • Kang, Youn Koo;Kang, Suk Won;Paek, Yee;Kim, Young Hwa;Jang, Jae Kyung;Ryou, Young Sun
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.317-323
    • /
    • 2017
  • In this study, the heating performance and the energy saving effect of the heat pump system using hot waste water(waste heat) of the thermal power plant discharged from a thermal power plant to the sea were analyzed. The greenhouse area was $5,280m^2$ and scale of the heat pump system was 120 RT(Refrigeration Ton), which was divided into 30 RT, 40 RT and 50 RT. The heat pump system consisted of the roll type heat exchangers, hot waste water transfer pipes, heat pumps(30, 40, 50 RT), a heat storage tank and fan coil units. The roll type heat exchangers was made of PE(Poly Ethylene) pipes in consideration of low cost and durability against corrosion, because hot waste water(sea water) is highly corrosive. And the heating period was 5 months from October to February. During the heating performance test(12 hours), the inlet water temperature of evaporator was changed from $32^{\circ}C$ to $26^{\circ}C$, and heat absorption of he evaporator was changed from 175 kW to 120 kW. The inlet water temperature of the condenser rose linearly from $15^{\circ}C$ to $50^{\circ}C$, and the heat release of condenser was reduced by 40 kW from 200 kW to 160 kW. And the power consumption of the heat pump system increased from 30 kW to 42 kW. When the inlet water temperature of condenser was $15^{\circ}C$, the heating COP(Coefficient Of Performance) was over 7.0. When it was $30^{\circ}C$, it dropped to 5.0, and when it was above $40^{\circ}C$, it decreased to less than 4.0. It was analyzed that the reduction of heating energy cost was 87% when compared to the duty free diesel that the carbon dioxide emission reduction effect was 62% by recycling the waste heat of the thermal power plant as a heat source of the heat pump system.